Suppr超能文献

利用“设计-构建-测试-学习”框架重塑磷酸酶底物偏好以进行可控生物合成。

Reshaping Phosphatase Substrate Preference for Controlled Biosynthesis Using a "Design-Build-Test-Learn" Framework.

机构信息

Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.

Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China.

出版信息

Adv Sci (Weinh). 2024 Jun;11(22):e2309852. doi: 10.1002/advs.202309852. Epub 2024 Mar 19.

Abstract

Biosynthesis is the application of enzymes in microbial cell factories and has emerged as a promising alternative to chemical synthesis. However, natural enzymes with limited catalytic performance often need to be engineered to meet specific needs through a time-consuming trial-and-error process. This study presents a quantum mechanics (QM)-incorporated design-build-test-learn (DBTL) framework to rationally design phosphatase BT4131, an enzyme with an ambiguous substrate spectrum involved in N-acetylglucosamine (GlcNAc) biosynthesis. First, mutant M1 (L129Q) is designed using force field-based methods, resulting in a 1.4-fold increase in substrate preference (k/K) toward GlcNAc-6-phosphate (GlcNAc6P). QM calculations indicate that the shift in substrate preference is caused by a 13.59 kcal mol reduction in activation energy. Furthermore, an iterative computer-aided design is conducted to stabilize the transition state. As a result, mutant M4 (I49Q/L129Q/G172L) with a 9.5-fold increase in k/K and a 59% decrease in k/K is highly desirable compared to the wild type in the GlcNAc-producing chassis. The GlcNAc titer increases to 217.3 g L with a yield of 0.597 g (g glucose) in a 50-L bioreactor, representing the highest reported level. Collectively, this DBTL framework provides an easy yet fascinating approach to the rational design of enzymes for industrially viable biocatalysts.

摘要

生物合成是在微生物细胞工厂中应用酶的方法,已成为化学合成的有前途的替代方法。然而,具有有限催化性能的天然酶通常需要通过耗时的反复试验过程进行工程改造,以满足特定需求。本研究提出了一种量子力学(QM)整合的设计-构建-测试-学习(DBTL)框架,以合理设计涉及 N-乙酰葡萄糖胺(GlcNAc)生物合成的酶 BT4131 的磷酸酶。首先,使用基于力场的方法设计突变体 M1(L129Q),导致对 GlcNAc-6-磷酸(GlcNAc6P)的底物偏好(k/K)增加了 1.4 倍。QM 计算表明,底物偏好的转变是由于活化能降低了 13.59 kcal/mol。此外,还进行了迭代计算机辅助设计以稳定过渡态。结果,与野生型相比,突变体 M4(I49Q/L129Q/G172L)的 k/K 增加了 9.5 倍,k/K 降低了 59%,在生产 GlcNAc 的底盘中具有很高的理想性。在 50-L 生物反应器中,GlcNAc 的产量增加到 217.3 g/L,葡萄糖得率为 0.597 g(g 葡萄糖),这是报道的最高水平。总的来说,这种 DBTL 框架为工业可行的生物催化剂的酶的合理设计提供了一种简单而迷人的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de38/11165480/4b9911dafb5f/ADVS-11-2309852-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验