Robinson Nicholas A, Robledo Diego, Sveen Lene, Daniels Rose Ruiz, Krasnov Aleksei, Coates Andrew, Jin Ye Hwa, Barrett Luke T, Lillehammer Marie, Kettunen Anne H, Phillips Ben L, Dempster Tim, Doeschl-Wilson Andrea, Samsing Francisca, Difford Gareth, Salisbury Sarah, Gjerde Bjarne, Haugen John-Erik, Burgerhout Erik, Dagnachew Binyam S, Kurian Dominic, Fast Mark D, Rye Morten, Salazar Marcela, Bron James E, Monaghan Sean J, Jacq Celeste, Birkett Mike, Browman Howard I, Skiftesvik Anne Berit, Fields David M, Selander Erik, Bui Samantha, Sonesson Anna, Skugor Stanko, Østbye Tone-Kari Knutsdatter, Houston Ross D
Nofima AS Tromsø Norway.
Sustainable Aquaculture Laboratory-Temperate and Tropical (SALTT) School of BioSciences, The University of Melbourne Melbourne Victoria Australia.
Rev Aquac. 2023 Mar;15(2):491-535. doi: 10.1111/raq.12733. Epub 2022 Sep 5.
Disease and parasitism cause major welfare, environmental and economic concerns for global aquaculture. In this review, we examine the status and potential of technologies that exploit genetic variation in host resistance to tackle this problem. We argue that there is an urgent need to improve understanding of the genetic mechanisms involved, leading to the development of tools that can be applied to boost host resistance and reduce the disease burden. We draw on two pressing global disease problems as case studies-sea lice infestations in salmonids and white spot syndrome in shrimp. We review how the latest genetic technologies can be capitalised upon to determine the mechanisms underlying inter- and intra-species variation in pathogen/parasite resistance, and how the derived knowledge could be applied to boost disease resistance using selective breeding, gene editing and/or with targeted feed treatments and vaccines. Gene editing brings novel opportunities, but also implementation and dissemination challenges, and necessitates new protocols to integrate the technology into aquaculture breeding programmes. There is also an ongoing need to minimise risks of disease agents evolving to overcome genetic improvements to host resistance, and insights from epidemiological and evolutionary models of pathogen infestation in wild and cultured host populations are explored. Ethical issues around the different approaches for achieving genetic resistance are discussed. Application of genetic technologies and approaches has potential to improve fundamental knowledge of mechanisms affecting genetic resistance and provide effective pathways for implementation that could lead to more resistant aquaculture stocks, transforming global aquaculture.
疾病和寄生虫感染给全球水产养殖带来了重大的福利、环境和经济问题。在本综述中,我们研究了利用宿主抗性的遗传变异来解决这一问题的技术的现状和潜力。我们认为,迫切需要增进对相关遗传机制的理解,从而开发出可用于增强宿主抗性和减轻疾病负担的工具。我们以两个紧迫的全球疾病问题作为案例研究——鲑科鱼类的海虱感染和虾类的白斑综合征。我们回顾了如何利用最新的遗传技术来确定病原体/寄生虫抗性种间和种内变异的潜在机制,以及如何将由此获得的知识应用于通过选择性育种、基因编辑和/或靶向饲料处理及疫苗来增强抗病能力。基因编辑带来了新的机遇,但也带来了实施和传播方面的挑战,并且需要新的方案将该技术整合到水产养殖育种计划中。还持续需要尽量降低病原体进化以克服宿主抗性遗传改良的风险,并探讨了野生和养殖宿主种群中病原体感染的流行病学和进化模型的见解。讨论了围绕实现遗传抗性的不同方法的伦理问题。遗传技术和方法的应用有可能增进对影响遗传抗性机制的基础知识的了解,并提供有效的实施途径,从而培育出更具抗性的水产养殖种群,变革全球水产养殖。