Xu Xinzhao, Bowen Benjamin J, Gwyther Rebecca E A, Freeley Mark, Grigorenko Bella, Nemukhin Alexander V, Eklöf-Österberg Johnas, Moth-Poulsen Kasper, Jones D Dafydd, Palma Matteo
Department of Chemistry and Materials Research Institute Queen Mary University of London London E1 4NS UK.
Molecular Biosciences Division School of Biosciences Sir Martin Evans Building Cardiff University Cardiff CF10 3AX UK.
Angew Chem Weinheim Bergstr Ger. 2021 Sep 6;133(37):20346-20351. doi: 10.1002/ange.202104044. Epub 2021 Aug 6.
The ability to detect proteins through gating conductance by their unique surface electrostatic signature holds great potential for improving biosensing sensitivity and precision. Two challenges are: (1) defining the electrostatic surface of the incoming ligand protein presented to the conductive surface; (2) bridging the Debye gap to generate a measurable response. Herein, we report the construction of nanoscale protein-based sensing devices designed to present proteins in defined orientations; this allowed us to control the local electrostatic surface presented within the Debye length, and thus modulate the conductance gating effect upon binding incoming protein targets. Using a β-lactamase binding protein (BLIP2) as the capture protein attached to carbon nanotube field effect transistors in different defined orientations. Device conductance had influence on binding TEM-1, an important β-lactamase involved in antimicrobial resistance (AMR). Conductance increased or decreased depending on TEM-1 presenting either negative or positive local charge patches, demonstrating that local electrostatic properties, as opposed to protein net charge, act as the key driving force for electrostatic gating. This, in turn can, improve our ability to tune the gating of electrical biosensors toward optimized detection, including for AMR as outlined herein.
通过独特的表面静电特征,利用门控电导检测蛋白质的能力,在提高生物传感灵敏度和精度方面具有巨大潜力。面临的两个挑战是:(1)确定呈现给导电表面的输入配体蛋白的静电表面;(2)跨越德拜间隙以产生可测量的响应。在此,我们报告了基于纳米级蛋白质的传感装置的构建,该装置旨在以特定方向呈现蛋白质;这使我们能够控制在德拜长度范围内呈现的局部静电表面,从而调节与输入蛋白质靶标结合时的电导门控效应。使用β-内酰胺酶结合蛋白(BLIP2)作为捕获蛋白,以不同的特定方向附着于碳纳米管场效应晶体管上。器件电导对结合TEM-1有影响,TEM-1是一种参与抗菌耐药性(AMR)的重要β-内酰胺酶。电导根据TEM-1呈现负或正的局部电荷斑块而增加或减少,表明与蛋白质净电荷相反,局部静电性质是静电门控的关键驱动力。反过来,这可以提高我们调整电化学生物传感器门控以实现优化检测的能力,包括本文所述的抗菌耐药性检测。