Division of Cardiovascular Medicine (V.A.K., R.H.W., N.S.T., N.Y., H.N.D.J., S.S., Y.H., C.M.R., M.T.W., E.A.A., V.N.P.).
University of California, Davis School of Medicine, Sacramento, CA (V.A.K.).
Circ Genom Precis Med. 2024 Apr;17(2):e004370. doi: 10.1161/CIRCGEN.123.004370. Epub 2024 Mar 20.
To realize the potential of genome engineering therapeutics, tractable strategies must be identified that balance personalized therapy with the need for off-the-shelf availability. We hypothesized that regional clustering of pathogenic variants can inform the design of rational prime editing therapeutics to treat the majority of genetic cardiovascular diseases with a limited number of reagents.
We collated 2435 high-confidence pathogenic/likely pathogenic (P/LP) variants in 82 cardiovascular disease genes from ClinVar. We assessed the regional density of these variants by defining a regional clustering index. We then combined a highly active base editor with prime editing to demonstrate the feasibility of a P/LP hotspot-directed genome engineering therapeutic strategy in vitro.
P/LP variants in cardiovascular disease genes display higher regional density than rare variants found in the general population. P/LP missense variants displayed higher average regional density than P/LP truncating variants. Following hypermutagenesis at a pathogenic hotspot, mean prime editing efficiency across introduced variants was 57±27%.
Designing therapeutics that target pathogenic hotspots will not only address known missense P/LP variants but also novel P/LP variants identified in these hotspots as well. Moreover, the clustering of P/LP missense rather than truncating variants in these hotspots suggests that prime editing technology is particularly valuable for dominant negative disease. Although prime editing technology in relation to cardiac health continues to improve, this study presents an approach to targeting the most impactful regions of the genome for inherited cardiovascular disease.
为了实现基因组工程治疗的潜力,必须确定可行的策略,在平衡个性化治疗与现货供应需求的同时,兼顾这两方面。我们假设致病变体的区域聚集可以为合理的 Prime 编辑治疗策略的设计提供信息,从而用有限数量的试剂治疗大多数遗传性心血管疾病。
我们从 ClinVar 中整理了 82 个心血管疾病基因中的 2435 个高可信度致病性/可能致病性(P/LP)变体。我们通过定义区域聚类指数来评估这些变体的区域密度。然后,我们将高度活跃的碱基编辑器与 Prime 编辑相结合,在体外证明了 P/LP 热点导向的基因组工程治疗策略的可行性。
心血管疾病基因中的 P/LP 变体比在普通人群中发现的稀有变体具有更高的区域密度。与 P/LP 截断变体相比,P/LP 错义变体的平均区域密度更高。在致病热点处进行超突变后,引入的变体的平均 Prime 编辑效率为 57±27%。
设计针对致病热点的治疗方法不仅可以解决已知的 P/LP 错义变体,还可以解决这些热点中发现的新的 P/LP 变体。此外,这些热点中 P/LP 错义而非截断变体的聚集表明,Prime 编辑技术对于显性负性疾病特别有价值。尽管与心脏健康相关的 Prime 编辑技术仍在不断改进,但本研究提出了一种针对遗传性心血管疾病基因组中最具影响力区域的靶向治疗方法。