California Institute of Technology, Pasadena, CA, USA.
Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA, USA.
Nature. 2024 Apr;628(8006):71-77. doi: 10.1038/s41586-024-07173-x. Epub 2024 Mar 20.
Quantum systems have entered a competitive regime in which classical computers must make approximations to represent highly entangled quantum states. However, in this beyond-classically-exact regime, fidelity comparisons between quantum and classical systems have so far been limited to digital quantum devices, and it remains unsolved how to estimate the actual entanglement content of experiments. Here, we perform fidelity benchmarking and mixed-state entanglement estimation with a 60-atom analogue Rydberg quantum simulator, reaching a high-entanglement entropy regime in which exact classical simulation becomes impractical. Our benchmarking protocol involves extrapolation from comparisons against an approximate classical algorithm, introduced here, with varying entanglement limits. We then develop and demonstrate an estimator of the experimental mixed-state entanglement, finding our experiment is competitive with state-of-the-art digital quantum devices performing random circuit evolution. Finally, we compare the experimental fidelity against that achieved by various approximate classical algorithms, and find that only the algorithm we introduce is able to keep pace with the experiment on the classical hardware we use. Our results enable a new model for evaluating the ability of both analogue and digital quantum devices to generate entanglement in the beyond-classically-exact regime, and highlight the evolving divide between quantum and classical systems.
量子系统已经进入了一个竞争的阶段,在这个阶段,经典计算机必须进行近似处理才能表示高度纠缠的量子态。然而,在这个超越经典精确的范围内,量子和经典系统之间的保真度比较迄今为止仅限于数字量子设备,并且仍然没有解决如何估计实验的实际纠缠内容的问题。在这里,我们使用一个 60 原子模拟里德堡量子模拟器进行保真度基准测试和混合态纠缠估计,达到了高纠缠熵的范围,在这个范围内,精确的经典模拟变得不切实际。我们的基准测试协议涉及通过与这里引入的、具有不同纠缠限制的近似经典算法进行比较来进行外推。然后,我们开发并演示了实验混合态纠缠的估计器,发现我们的实验与执行随机电路演化的最先进的数字量子设备相当。最后,我们将实验保真度与各种近似经典算法的结果进行比较,发现只有我们引入的算法能够在我们使用的经典硬件上跟上实验的步伐。我们的结果为评估模拟和数字量子设备在超越经典精确的范围内生成纠缠的能力提供了一个新的模型,并突出了量子和经典系统之间不断演变的分歧。