Suppr超能文献

哺乳动物发育增强子激活过程中增强子-启动子相互作用增加。

Increased enhancer-promoter interactions during developmental enhancer activation in mammals.

机构信息

Department of Developmental and Cell Biology, School of the Biological Sciences, University of California, Irvine, CA, USA.

Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.

出版信息

Nat Genet. 2024 Apr;56(4):675-685. doi: 10.1038/s41588-024-01681-2. Epub 2024 Mar 20.

Abstract

Remote enhancers are thought to interact with their target promoters via physical proximity, yet the importance of this proximity for enhancer function remains unclear. Here we investigate the three-dimensional (3D) conformation of enhancers during mammalian development by generating high-resolution tissue-resolved contact maps for nearly a thousand enhancers with characterized in vivo activities in ten murine embryonic tissues. Sixty-one percent of developmental enhancers bypass their neighboring genes, which are often marked by promoter CpG methylation. The majority of enhancers display tissue-specific 3D conformations, and both enhancer-promoter and enhancer-enhancer interactions are moderately but consistently increased upon enhancer activation in vivo. Less than 14% of enhancer-promoter interactions form stably across tissues; however, these invariant interactions form in the absence of the enhancer and are likely mediated by adjacent CTCF binding. Our results highlight the general importance of enhancer-promoter physical proximity for developmental gene activation in mammals.

摘要

远程增强子被认为通过物理接近与其靶启动子相互作用,但这种接近对增强子功能的重要性仍不清楚。在这里,我们通过在十个鼠胚胎组织中生成近千个具有特征性体内活性的增强子的高分辨率组织分辨接触图谱,研究了哺乳动物发育过程中增强子的三维(3D)构象。61%的发育增强子绕过其邻近的基因,这些基因通常被启动子 CpG 甲基化标记。大多数增强子表现出组织特异性的 3D 构象,并且增强子-启动子和增强子-增强子相互作用在体内增强子激活时适度但一致地增加。不到 14%的增强子-启动子相互作用在组织间稳定形成;然而,这些不变的相互作用在没有增强子的情况下形成,并且可能由相邻的 CTCF 结合介导。我们的结果强调了增强子-启动子物理接近对于哺乳动物发育基因激活的普遍重要性。

相似文献

1
Increased enhancer-promoter interactions during developmental enhancer activation in mammals.
Nat Genet. 2024 Apr;56(4):675-685. doi: 10.1038/s41588-024-01681-2. Epub 2024 Mar 20.
2
Three-dimensional genome architectural CCCTC-binding factor makes choice in duplicated enhancers at Pcdhα locus.
Sci China Life Sci. 2020 Jun;63(6):835-844. doi: 10.1007/s11427-019-1598-4. Epub 2020 Apr 2.
3
Nonlinear control of transcription through enhancer-promoter interactions.
Nature. 2022 Apr;604(7906):571-577. doi: 10.1038/s41586-022-04570-y. Epub 2022 Apr 13.
4
The role of loop extrusion in enhancer-mediated gene activation.
Curr Opin Genet Dev. 2023 Apr;79:102022. doi: 10.1016/j.gde.2023.102022. Epub 2023 Feb 24.
5
Enhancer selectivity in space and time: from enhancer-promoter interactions to promoter activation.
Nat Rev Mol Cell Biol. 2024 Jul;25(7):574-591. doi: 10.1038/s41580-024-00710-6. Epub 2024 Feb 27.
6
Coming full circle: On the origin and evolution of the looping model for enhancer-promoter communication.
J Biol Chem. 2022 Aug;298(8):102117. doi: 10.1016/j.jbc.2022.102117. Epub 2022 Jun 9.
7
The Mediator complex regulates enhancer-promoter interactions.
Nat Struct Mol Biol. 2023 Jul;30(7):991-1000. doi: 10.1038/s41594-023-01027-2. Epub 2023 Jul 10.
8
Enhancer-core-promoter specificity separates developmental and housekeeping gene regulation.
Nature. 2015 Feb 26;518(7540):556-9. doi: 10.1038/nature13994. Epub 2014 Dec 15.
9
Enhancer loops appear stable during development and are associated with paused polymerase.
Nature. 2014 Aug 7;512(7512):96-100. doi: 10.1038/nature13417. Epub 2014 Jul 2.
10
Chromatin connectivity maps reveal dynamic promoter-enhancer long-range associations.
Nature. 2013 Dec 12;504(7479):306-310. doi: 10.1038/nature12716. Epub 2013 Nov 10.

引用本文的文献

1
3D Genome Engineering: Current Advances and Therapeutic Opportunities in Human Diseases.
Research (Wash D C). 2025 Sep 1;8:0865. doi: 10.34133/research.0865. eCollection 2025.
2
Machine learning tools for deciphering the regulatory logic of enhancers in health and disease.
Front Genet. 2025 Aug 13;16:1603687. doi: 10.3389/fgene.2025.1603687. eCollection 2025.
3
Pore-C Pipeline-Toolbox: a comprehensive pipeline for Pore-C data analysis.
Brief Bioinform. 2025 Jul 2;26(4). doi: 10.1093/bib/bbaf435.
4
Genome structure mapping with high-resolution 3D genomics and deep learning.
bioRxiv. 2025 May 7:2025.05.06.650874. doi: 10.1101/2025.05.06.650874.
5
Range extender mediates long-distance enhancer activity.
Nature. 2025 Jul 2. doi: 10.1038/s41586-025-09221-6.
6
Acetylation-Mediated Epigenetic Consequences for Biological Control and Cancer.
Results Probl Cell Differ. 2025;75:25-69. doi: 10.1007/978-3-031-91459-1_2.
7
Structural variants in the 3D genome as drivers of disease.
Nat Rev Genet. 2025 Jun 30. doi: 10.1038/s41576-025-00862-x.
9
Biological roles of enhancer RNA m6A modification and its implications in cancer.
Cell Commun Signal. 2025 May 30;23(1):254. doi: 10.1186/s12964-025-02254-4.
10
Regulation of RNA polymerase II transcription through re-initiation and bursting.
Mol Cell. 2025 May 15;85(10):1907-1919. doi: 10.1016/j.molcel.2025.04.011.

本文引用的文献

1
Chromatin expansion microscopy reveals nanoscale organization of transcription and chromatin.
Science. 2023 Jul 7;381(6653):92-100. doi: 10.1126/science.ade5308. Epub 2023 Jul 6.
2
Recent progress and challenges in single-cell imaging of enhancer-promoter interaction.
Curr Opin Genet Dev. 2023 Apr;79:102023. doi: 10.1016/j.gde.2023.102023. Epub 2023 Feb 26.
3
Enhancer-promoter interactions can bypass CTCF-mediated boundaries and contribute to phenotypic robustness.
Nat Genet. 2023 Feb;55(2):280-290. doi: 10.1038/s41588-022-01295-6. Epub 2023 Jan 30.
4
Current challenges in understanding the role of enhancers in disease.
Nat Struct Mol Biol. 2022 Dec;29(12):1148-1158. doi: 10.1038/s41594-022-00896-3. Epub 2022 Dec 8.
5
Enhancer-promoter interactions and transcription are largely maintained upon acute loss of CTCF, cohesin, WAPL or YY1.
Nat Genet. 2022 Dec;54(12):1919-1932. doi: 10.1038/s41588-022-01223-8. Epub 2022 Dec 5.
6
Repression and 3D-restructuring resolves regulatory conflicts in evolutionarily rearranged genomes.
Cell. 2022 Sep 29;185(20):3689-3704.e21. doi: 10.1016/j.cell.2022.09.006.
7
Compatibility rules of human enhancer and promoter sequences.
Nature. 2022 Jul;607(7917):176-184. doi: 10.1038/s41586-022-04877-w. Epub 2022 May 20.
8
Systematic analysis of intrinsic enhancer-promoter compatibility in the mouse genome.
Mol Cell. 2022 Jul 7;82(13):2519-2531.e6. doi: 10.1016/j.molcel.2022.04.009. Epub 2022 Apr 29.
9
Analysing high-throughput sequencing data in Python with HTSeq 2.0.
Bioinformatics. 2022 May 13;38(10):2943-2945. doi: 10.1093/bioinformatics/btac166.
10
Nonlinear control of transcription through enhancer-promoter interactions.
Nature. 2022 Apr;604(7906):571-577. doi: 10.1038/s41586-022-04570-y. Epub 2022 Apr 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验