Suppr超能文献

通过特征融合和遗传算法鉴定精神分裂症中的重要基因特征。

Identification of important gene signatures in schizophrenia through feature fusion and genetic algorithm.

机构信息

Hangzhou Dianzi University, Hangzhou, China.

Hangzhou Institute of Advanced Technology, Hangzhou, China.

出版信息

Mamm Genome. 2024 Jun;35(2):241-255. doi: 10.1007/s00335-024-10034-7. Epub 2024 Mar 21.

Abstract

Schizophrenia is a debilitating psychiatric disorder that can significantly affect a patient's quality of life and lead to permanent brain damage. Although medical research has identified certain genetic risk factors, the specific pathogenesis of the disorder remains unclear. Despite the prevalence of research employing magnetic resonance imaging, few studies have focused on the gene level and gene expression profile involving a large number of screened genes. However, the high dimensionality of genetic data presents a great challenge to accurately modeling the data. To tackle the current challenges, this study presents a novel feature selection strategy that utilizes heuristic feature fusion and a multi-objective optimization genetic algorithm. The goal is to improve classification performance and identify the key gene subset for schizophrenia diagnostics. Traditional gene screening techniques are inadequate for accurately determining the precise number of key genes associated with schizophrenia. Our innovative approach integrates a filter-based feature selection method to reduce data dimensionality and a multi-objective optimization genetic algorithm for improved classification tasks. By combining the filtering and wrapper methods, our strategy leverages their respective strengths in a deliberate manner, leading to superior classification accuracy and a more efficient selection of relevant genes. This approach has demonstrated significant improvements in classification results across 11 out of 14 relevant datasets. The performance on the remaining three datasets is comparable to the existing methods. Furthermore, visual and enrichment analyses have confirmed the practicality of our proposed method as a promising tool for the early detection of schizophrenia.

摘要

精神分裂症是一种使人虚弱的精神疾病,会严重影响患者的生活质量,并导致永久性脑损伤。虽然医学研究已经确定了某些遗传风险因素,但该疾病的确切发病机制仍不清楚。尽管磁共振成像的研究很普遍,但很少有研究关注涉及大量筛选基因的基因水平和基因表达谱。然而,遗传数据的高维性给准确建模数据带来了巨大挑战。为了解决当前的挑战,本研究提出了一种新颖的特征选择策略,该策略利用启发式特征融合和多目标优化遗传算法。目的是提高分类性能并确定用于精神分裂症诊断的关键基因子集。传统的基因筛选技术无法准确确定与精神分裂症相关的关键基因的确切数量。我们的创新方法集成了基于过滤的特征选择方法,以降低数据维度,并使用多目标优化遗传算法来改进分类任务。通过结合过滤和包装器方法,我们的策略以深思熟虑的方式利用了它们各自的优势,从而实现了更高的分类准确性和更有效的相关基因选择。这种方法在 14 个相关数据集的 11 个数据集上的分类结果得到了显著提高。在其余三个数据集上的性能与现有方法相当。此外,可视化和富集分析证实了我们提出的方法作为精神分裂症早期检测的一种有前途的工具的实用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验