Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America.
Center for Microbiome Research, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America.
PLoS Genet. 2024 Mar 21;20(3):e1011215. doi: 10.1371/journal.pgen.1011215. eCollection 2024 Mar.
Enterococci are commensal members of the gastrointestinal tract and also major nosocomial pathogens. They possess both intrinsic and acquired resistance to many antibiotics, including intrinsic resistance to cephalosporins that target bacterial cell wall synthesis. These antimicrobial resistance traits make enterococcal infections challenging to treat. Moreover, prior therapy with antibiotics, including broad-spectrum cephalosporins, promotes enterococcal proliferation in the gut, resulting in dissemination to other sites of the body and subsequent infection. As a result, a better understanding of mechanisms of cephalosporin resistance is needed to enable development of new therapies to treat or prevent enterococcal infections. We previously reported that flow of metabolites through the peptidoglycan biosynthesis pathway is one determinant of enterococcal cephalosporin resistance. One factor that has been implicated in regulating flow of metabolites into cell wall biosynthesis pathways of other Gram-positive bacteria is GlmR. In enterococci, GlmR is encoded as the middle gene of a predicted 3-gene operon along with YvcJ and YvcL, whose functions are poorly understood. Here we use genetics and biochemistry to investigate the function of the enterococcal yvcJ-glmR-yvcL gene cluster. Our results reveal that YvcL is a DNA-binding protein that regulates expression of the yvcJ-glmR-yvcL operon in response to cell wall stress. YvcJ and GlmR bind UDP-GlcNAc and reciprocally regulate cephalosporin resistance in E. faecalis, and binding of UDP-GlcNAc by YvcJ appears essential for its activity. Reciprocal regulation by YvcJ/GlmR is essential for fitness during exposure to cephalosporin stress. Additionally, our results indicate that enterococcal GlmR likely acts by a different mechanism than the previously studied GlmR of Bacillus subtilis, suggesting that the YvcJ/GlmR regulatory module has evolved unique targets in different species of bacteria.
肠球菌是胃肠道的共生成员,也是主要的医院获得性病原体。它们对许多抗生素具有内在和获得性耐药性,包括针对细菌细胞壁合成的头孢菌素的固有耐药性。这些抗菌药物耐药性特征使得肠球菌感染的治疗具有挑战性。此外,先前使用抗生素治疗,包括广谱头孢菌素,会促进肠道内肠球菌的增殖,导致其传播到身体的其他部位并随后感染。因此,需要更好地了解头孢菌素耐药性的机制,以便开发新的治疗方法来治疗或预防肠球菌感染。我们之前报道过,代谢物通过肽聚糖生物合成途径的流动是肠球菌头孢菌素耐药性的一个决定因素。其他革兰氏阳性菌细胞壁生物合成途径中,一种调节代谢物流入的因素是 GlmR。在肠球菌中,GlmR 是一个预测的 3 基因操纵子的中间基因,与 YvcJ 和 YvcL 一起编码,其功能知之甚少。在这里,我们使用遗传学和生物化学方法研究肠球菌 yvcJ-glmR-yvcL 基因簇的功能。我们的结果表明,YvcL 是一种 DNA 结合蛋白,可调节细胞壁应激时 yvcJ-glmR-yvcL 操纵子的表达。YvcJ 和 GlmR 结合 UDP-GlcNAc,并相互调节粪肠球菌的头孢菌素耐药性,而 YvcJ 结合 UDP-GlcNAc 似乎对其活性至关重要。YvcJ/GlmR 的相互调节对于在头孢菌素应激下的适应性至关重要。此外,我们的结果表明,肠球菌 GlmR 的作用机制可能与先前研究的枯草芽孢杆菌 GlmR 不同,这表明 YvcJ/GlmR 调节模块在不同细菌物种中已经进化出了独特的靶标。