Suppr超能文献

基于 Coati 优化算法的脑电信号情感识别全局优化与特征选择

An enhanced Coati Optimization Algorithm for global optimization and feature selection in EEG emotion recognition.

机构信息

Faculty of Computers and Information, Minia University, Minia, Egypt.

出版信息

Comput Biol Med. 2024 May;173:108329. doi: 10.1016/j.compbiomed.2024.108329. Epub 2024 Mar 19.

Abstract

Emotion recognition based on Electroencephalography (EEG) signals has garnered significant attention across diverse domains including healthcare, education, information sharing, and gaming, among others. Despite its potential, the absence of a standardized feature set poses a challenge in efficiently classifying various emotions. Addressing the issue of high dimensionality, this paper introduces an advanced variant of the Coati Optimization Algorithm (COA), called eCOA for global optimization and selecting the best subset of EEG features for emotion recognition. Specifically, COA suffers from local optima and imbalanced exploitation abilities as other metaheuristic methods. The proposed eCOA incorporates the COA and RUNge Kutta Optimizer (RUN) algorithms. The Scale Factor (SF) and Enhanced Solution Quality (ESQ) mechanism from RUN are applied to resolve the raised shortcomings of COA. The proposed eCOA algorithm has been extensively evaluated using the CEC'22 test suite and two EEG emotion recognition datasets, DEAP and DREAMER. Furthermore, the eCOA is applied for binary and multi-class classification of emotions in the dimensions of valence, arousal, and dominance using a multi-layer perceptron neural network (MLPNN). The experimental results revealed that the eCOA algorithm has more powerful search capabilities than the original COA and seven well-known counterpart methods related to statistical, convergence, and diversity measures. Furthermore, eCOA can efficiently support feature selection to find the best EEG features to maximize performance on four quadratic emotion classification problems compared to the methods of its counterparts. The suggested method obtains a classification accuracy of 85.17% and 95.21% in the binary classification of low and high arousal emotions in two public datasets: DEAP and DREAMER, respectively, which are 5.58% and 8.98% superior to existing approaches working on the same datasets for different subjects, respectively.

摘要

基于脑电图 (EEG) 信号的情绪识别在医疗保健、教育、信息共享和游戏等多个领域引起了广泛关注。尽管它具有潜力,但缺乏标准化的特征集在有效分类各种情绪方面构成了挑战。针对高维性问题,本文提出了一种 Coati 优化算法 (COA) 的高级变体,称为 eCOA,用于全局优化和选择用于情绪识别的最佳 EEG 特征子集。具体来说,COA 像其他元启发式方法一样,存在局部最优和不平衡的开发能力。所提出的 eCOA 结合了 COA 和 RUNge Kutta 优化器 (RUN) 算法。应用 RUN 的比例因子 (SF) 和增强解决方案质量 (ESQ) 机制来解决 COA 提出的缺点。该 eCOA 算法已使用 CEC'22 测试套件和两个 EEG 情绪识别数据集 DEAP 和 DREAMER 进行了广泛评估。此外,eCOA 应用于使用多层感知机神经网络 (MLPNN) 在效价、唤醒和优势维度对情绪进行二进制和多类分类。实验结果表明,eCOA 算法比原始 COA 和七个与统计、收敛性和多样性度量相关的知名对照方法具有更强的搜索能力。此外,与对照方法相比,eCOA 可以有效地支持特征选择,以找到最佳 EEG 特征,从而在四个二次情绪分类问题上最大限度地提高性能。所提出的方法在两个公共数据集 DEAP 和 DREAMER 中分别获得了低唤醒和高唤醒情绪的二进制分类的 85.17%和 95.21%的分类精度,分别比在相同数据集上为不同受试者工作的现有方法高 5.58%和 8.98%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验