Faculty of Medicine, Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden; Escherichia coli Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain; Clinical Microbiology Lab, University Hospital Complex of Santiago de Compostela, Santiago de Compostela, Spain.
Faculty of Medicine, Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden.
Mol Cell Proteomics. 2024 May;23(5):100753. doi: 10.1016/j.mcpro.2024.100753. Epub 2024 Mar 23.
Bacterial or viral antigens can contain subdominant protein regions that elicit weak antibody responses upon vaccination or infection although there is accumulating evidence that antibody responses against subdominant regions can enhance the protective immune response. One proposed mechanism for subdominant protein regions is the binding of host proteins that prevent antibody production against epitopes hidden within the protein binding interfaces. Here, we used affinity purification combined with quantitative mass spectrometry (AP-MS) to examine the level of competition between antigen-specific antibodies and host-pathogen protein interaction networks using the M1 protein from Streptococcus pyogenes as a model system. As most humans have circulating antibodies against the M1 protein, we first used AP-MS to show that the M1 protein interspecies protein network formed with human plasma proteins is largely conserved in naïve mice. Immunizing mice with the M1 protein generated a time-dependent increase of anti-M1 antibodies. AP-MS analysis comparing the composition of the M1-plasma protein network from naïve and immunized mice showed significant enrichment of 292 IgG peptides associated with 56 IgG chains in the immune mice. Despite the significant increase of bound IgGs, the levels of interacting plasma proteins were not significantly reduced in the immune mice. The results indicate that the antigen-specific polyclonal IgG against the M1 protein primarily targets epitopes outside the other plasma protein binding interfaces. In conclusion, this study demonstrates that AP-MS is a promising strategy to determine the relationship between antigen-specific antibodies and host-pathogen interaction networks that could be used to define subdominant protein regions of relevance for vaccine development.
细菌或病毒抗原可以包含亚显性蛋白区域,这些区域在接种疫苗或感染时会引发较弱的抗体反应,尽管越来越多的证据表明针对亚显性区域的抗体反应可以增强保护性免疫反应。亚显性蛋白区域的一个提出的机制是宿主蛋白的结合,这些蛋白可以防止针对隐藏在蛋白质结合界面内的表位的抗体产生。在这里,我们使用亲和纯化结合定量质谱(AP-MS)来检查抗原特异性抗体与宿主-病原体蛋白相互作用网络之间的竞争水平,使用酿脓链球菌的 M1 蛋白作为模型系统。由于大多数人都有针对 M1 蛋白的循环抗体,因此我们首先使用 AP-MS 表明,与人类血浆蛋白形成的 M1 蛋白种间蛋白网络在未免疫的小鼠中基本保守。用 M1 蛋白免疫小鼠会导致针对 M1 的抗体的时间依赖性增加。AP-MS 分析比较了来自未免疫和免疫小鼠的 M1-血浆蛋白网络的组成,显示在免疫小鼠中有 292 个与 56 个 IgG 链相关的 IgG 肽显著富集。尽管结合的 IgGs 显著增加,但免疫小鼠中相互作用的血浆蛋白水平没有显著降低。结果表明,针对 M1 蛋白的抗原特异性多克隆 IgG 主要针对其他血浆蛋白结合界面之外的表位。总之,这项研究表明,AP-MS 是一种有前途的策略,可以确定抗原特异性抗体与宿主-病原体相互作用网络之间的关系,这可用于确定疫苗开发相关的亚显性蛋白区域。