Flemmich Laurin, Bereiter Raphael, Micura Ronald
Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria.
Angew Chem Int Ed Engl. 2024 May 27;63(22):e202403063. doi: 10.1002/anie.202403063. Epub 2024 Apr 18.
Ribonucleic acids (RNAs) play a vital role in living organisms. Many of their cellular functions depend critically on chemical modification. Methods to modify RNA in a controlled manner-both in vitro and in vivo-are thus essential to evaluate and understand RNA biology at the molecular and mechanistic levels. The diversity of modifications, combined with the size and uniformity of RNA (made up of only 4 nucleotides) makes its site-specific modification a challenging task that needs to be addressed by complementary approaches. One such approach is solid-phase RNA synthesis. We discuss recent developments in this field, starting with new protection concepts in the ongoing effort to overcome current size limitations. We continue with selected modifications that have posed significant challenges for their incorporation into RNA. These include deazapurine bases required for atomic mutagenesis to elucidate mechanistic aspects of catalytic RNAs, and RNA containing xanthosine, N-acetylcytidine, 5-hydroxymethylcytidine, 3-methylcytidine, 2'-OCF, and 2'-N ribose modifications. We also discuss the all-chemical synthesis of 5'-capped mRNAs and the enzymatic ligation of chemically synthesized oligoribonucleotides to obtain long RNA with multiple distinct modifications, such as those needed for single-molecule FRET studies. Finally, we highlight promising developments in RNA-catalyzed RNA modification using cofactors that transfer bioorthogonal functionalities.
核糖核酸(RNAs)在生物体内发挥着至关重要的作用。它们的许多细胞功能严重依赖于化学修饰。因此,在体外和体内以可控方式修饰RNA的方法对于在分子和机制层面评估和理解RNA生物学至关重要。修饰的多样性,再加上RNA的大小和均一性(仅由4种核苷酸组成),使得其位点特异性修饰成为一项具有挑战性的任务,需要通过互补方法来解决。固相RNA合成就是这样一种方法。我们将讨论该领域的最新进展,首先从正在进行的克服当前大小限制的新保护概念开始。接着我们将介绍在将特定修饰掺入RNA时面临重大挑战的一些修饰。这些修饰包括用于原子诱变以阐明催化RNA机制方面的脱氮嘌呤碱基,以及含有黄嘌呤核苷、N - 乙酰胞苷、5 - 羟甲基胞苷、3 - 甲基胞苷、2'-OCF和2'-N核糖修饰的RNA。我们还将讨论5'-帽化mRNA的全化学合成以及化学合成的寡核糖核苷酸的酶促连接,以获得具有多种不同修饰的长RNA,例如单分子荧光共振能量转移(FRET)研究所需的修饰。最后,我们将重点介绍使用转移生物正交功能的辅因子进行RNA催化的RNA修饰方面的有前景的进展。