Mehra Priyanka, Hintze Arend
Department for MicroData Analytics, Dalarna University, 791 88 Falun, Sweden.
BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI 48824, USA.
Biology (Basel). 2024 Mar 17;13(3):193. doi: 10.3390/biology13030193.
This study investigates whether reducing epistasis and pleiotropy enhances mutational robustness in evolutionary adaptation, utilizing an indirect encoded model within the "survival of the flattest" (SoF) fitness landscape. By simulating genetic variations and their phenotypic consequences, we explore organisms' adaptive mechanisms to maintain positions on higher, narrower evolutionary peaks amidst environmental and genetic pressures. Our results reveal that organisms can indeed sustain their advantageous positions by minimizing the complexity of genetic interactions-specifically, by reducing the levels of epistasis and pleiotropy. This finding suggests a counterintuitive strategy for evolutionary stability: simpler genetic architectures, characterized by fewer gene interactions and multifunctional genes, confer a survival advantage by enhancing mutational robustness. This study contributes to our understanding of the genetic underpinnings of adaptability and robustness, challenging traditional views that equate complexity with fitness in dynamic environments.
本研究利用“最平者生存”(SoF)适应度景观中的间接编码模型,探究减少上位性和多效性是否会增强进化适应中的突变稳健性。通过模拟遗传变异及其表型后果,我们探索生物体在环境和遗传压力下维持在更高、更窄的进化峰上的位置的适应机制。我们的结果表明,生物体确实可以通过最小化遗传相互作用的复杂性来维持其优势地位,具体而言,是通过降低上位性和多效性的水平。这一发现提出了一种关于进化稳定性的反直觉策略:以较少的基因相互作用和多功能基因为特征的更简单的遗传结构,通过增强突变稳健性赋予生存优势。本研究有助于我们理解适应性和稳健性的遗传基础,挑战了在动态环境中将复杂性等同于适应度的传统观点。