Suppr超能文献

探索杰出的蛋白质-蛋白质相互作用变换器的知识。

Exploring the Knowledge of an Outstanding Protein to Protein Interaction Transformer.

作者信息

Yang Sen, Cheng Peng, Liu Yang, Feng Dawei, Wang Shengqi

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2024 Sep-Oct;21(5):1287-1298. doi: 10.1109/TCBB.2024.3381825. Epub 2024 Oct 9.

Abstract

Protein-to-protein interaction (PPI) prediction aims to predict whether two given proteins interact or not. Compared with traditional experimental methods of high cost and low efficiency, the current deep learning based approach makes it possible to discover massive potential PPIs from large-scale databases. However, deep PPI prediction models perform poorly on unseen species, as their proteins are not in the training set. Targetting on this issue, the paper first proposes PPITrans, a Transformer based PPI prediction model that exploits a language model pre-trained on proteins to conduct binary PPI prediction. To validate the effectiveness on unseen species, PPITrans is trained with Human PPIs and tested on PPIs of other species. Experimental results show that PPITrans significantly outperforms the previous state-of-the-art on various metrics, especially on PPIs of unseen species. For example, the AUPR improves 0.339 absolutely on Fly PPIs. Aiming to explore the knowledge learned by PPITrans from PPI data, this paper also designs a series of probes belonging to three categories. Their results reveal several interesting findings, like that although PPITrans cannot capture the spatial structure of proteins, it can obtain knowledge of PPI type and binding affinity, learning more than binary PPI.

摘要

蛋白质-蛋白质相互作用(PPI)预测旨在预测两个给定的蛋白质是否相互作用。与传统的高成本、低效率实验方法相比,当前基于深度学习的方法使得从大规模数据库中发现大量潜在的PPI成为可能。然而,深度PPI预测模型在未见物种上表现不佳,因为这些物种的蛋白质不在训练集中。针对这一问题,本文首先提出了PPITrans,这是一种基于Transformer的PPI预测模型,它利用在蛋白质上预训练的语言模型进行二元PPI预测。为了验证在未见物种上的有效性,PPITrans使用人类PPI进行训练,并在其他物种的PPI上进行测试。实验结果表明,PPITrans在各种指标上显著优于先前的最先进模型,特别是在未见物种的PPI上。例如,在果蝇PPI上,AUPR绝对提高了0.339。为了探索PPITrans从PPI数据中学到的知识,本文还设计了一系列属于三类的探针。它们的结果揭示了几个有趣的发现,比如尽管PPITrans无法捕捉蛋白质的空间结构,但它可以获得PPI类型和结合亲和力的知识,学到的不仅仅是二元PPI。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验