Suppr超能文献

揭示生物多样性变化状况中的不确定性。

Revealing uncertainty in the status of biodiversity change.

作者信息

Johnson T F, Beckerman A P, Childs D Z, Webb T J, Evans K L, Griffiths C A, Capdevila P, Clements C F, Besson M, Gregory R D, Thomas G H, Delmas E, Freckleton R P

机构信息

School of Biosciences, Ecology and Evolutionary Biology, University of Sheffield, Sheffield, UK.

Swedish University of Agricultural Sciences, Department of Aquatic Resources, Institute of Marine Research, Lysekil, Sweden.

出版信息

Nature. 2024 Apr;628(8009):788-794. doi: 10.1038/s41586-024-07236-z. Epub 2024 Mar 27.

Abstract

Biodiversity faces unprecedented threats from rapid global change. Signals of biodiversity change come from time-series abundance datasets for thousands of species over large geographic and temporal scales. Analyses of these biodiversity datasets have pointed to varied trends in abundance, including increases and decreases. However, these analyses have not fully accounted for spatial, temporal and phylogenetic structures in the data. Here, using a new statistical framework, we show across ten high-profile biodiversity datasets that increases and decreases under existing approaches vanish once spatial, temporal and phylogenetic structures are accounted for. This is a consequence of existing approaches severely underestimating trend uncertainty and sometimes misestimating the trend direction. Under our revised average abundance trends that appropriately recognize uncertainty, we failed to observe a single increasing or decreasing trend at 95% credible intervals in our ten datasets. This emphasizes how little is known about biodiversity change across vast spatial and taxonomic scales. Despite this uncertainty at vast scales, we reveal improved local-scale prediction accuracy by accounting for spatial, temporal and phylogenetic structures. Improved prediction offers hope of estimating biodiversity change at policy-relevant scales, guiding adaptive conservation responses.

摘要

生物多样性正面临着来自全球快速变化的前所未有的威胁。生物多样性变化的信号来自于数千个物种在大地理范围和时间尺度上的时间序列丰度数据集。对这些生物多样性数据集的分析指出了丰度的不同趋势,包括增加和减少。然而,这些分析尚未充分考虑数据中的空间、时间和系统发育结构。在这里,我们使用一个新的统计框架,在十个备受瞩目的生物多样性数据集中表明,一旦考虑到空间、时间和系统发育结构,现有方法下的增加和减少趋势就会消失。这是现有方法严重低估趋势不确定性且有时错误估计趋势方向的结果。在我们经修订的适当认识到不确定性的平均丰度趋势下,我们在十个数据集中未能在95%可信区间观察到单一的增加或减少趋势。这凸显了在广阔的空间和分类尺度上对生物多样性变化的了解是多么有限。尽管在大尺度上存在这种不确定性,但我们通过考虑空间、时间和系统发育结构揭示了局部尺度预测准确性的提高。预测准确性的提高为在与政策相关的尺度上估计生物多样性变化、指导适应性保护应对措施带来了希望。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58d4/11041640/918f445bf619/41586_2024_7236_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验