Suppr超能文献

基于多尺度特征融合的神经网络对甲状腺滤泡性肿瘤超声图像的鉴别价值。

The value of a neural network based on multi-scale feature fusion to ultrasound images for the differentiation in thyroid follicular neoplasms.

机构信息

Department of Medical Ultrasound, Affiliated Hospital of Nantong University, 226001, Nantong, P.R. China.

Department of Medical Ultrasound, Affiliated Hospital of Jiangsu University, 212000, Zhenjiang, P.R. China.

出版信息

BMC Med Imaging. 2024 Mar 27;24(1):74. doi: 10.1186/s12880-024-01244-1.

Abstract

OBJECTIVE

The objective of this research was to create a deep learning network that utilizes multiscale images for the classification of follicular thyroid carcinoma (FTC) and follicular thyroid adenoma (FTA) through preoperative US.

METHODS

This retrospective study involved the collection of ultrasound images from 279 patients at two tertiary level hospitals. To address the issue of false positives caused by small nodules, we introduced a multi-rescale fusion network (MRF-Net). Four different deep learning models, namely MobileNet V3, ResNet50, DenseNet121 and MRF-Net, were studied based on the feature information extracted from ultrasound images. The performance of each model was evaluated using various metrics, including sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), accuracy, F1 value, receiver operating curve (ROC), area under the curve (AUC), decision curve analysis (DCA), and confusion matrix.

RESULTS

Out of the total nodules examined, 193 were identified as FTA and 86 were confirmed as FTC. Among the deep learning models evaluated, MRF-Net exhibited the highest accuracy and area under the curve (AUC) with values of 85.3% and 84.8%, respectively. Additionally, MRF-Net demonstrated superior sensitivity and specificity compared to other models. Notably, MRF-Net achieved an impressive F1 value of 83.08%. The curve of DCA revealed that MRF-Net consistently outperformed the other models, yielding higher net benefits across various decision thresholds.

CONCLUSION

The utilization of MRF-Net enables more precise discrimination between benign and malignant thyroid follicular tumors utilizing preoperative US.

摘要

目的

本研究旨在创建一个深度学习网络,通过术前 US 利用多尺度图像对滤泡状甲状腺癌(FTC)和滤泡状甲状腺腺瘤(FTA)进行分类。

方法

这项回顾性研究收集了来自两家三级医院的 279 名患者的超声图像。为了解决小结节引起的假阳性问题,我们引入了多尺度融合网络(MRF-Net)。基于超声图像提取的特征信息,研究了四种不同的深度学习模型,即 MobileNet V3、ResNet50、DenseNet121 和 MRF-Net。使用各种指标评估每个模型的性能,包括灵敏度、特异性、阳性预测值(PPV)、阴性预测值(NPV)、准确性、F1 值、接收器操作曲线(ROC)、曲线下面积(AUC)、决策曲线分析(DCA)和混淆矩阵。

结果

在检查的总结节中,193 个被确定为 FTA,86 个被确认为 FTC。在评估的深度学习模型中,MRF-Net 的准确率和 AUC 值最高,分别为 85.3%和 84.8%。此外,MRF-Net 与其他模型相比,具有更高的敏感性和特异性。值得注意的是,MRF-Net 实现了令人印象深刻的 83.08%的 F1 值。DCA 曲线表明,MRF-Net 在各个决策阈值下始终优于其他模型,产生更高的净收益。

结论

利用 MRF-Net 可以利用术前 US 更精确地区分良性和恶性甲状腺滤泡性肿瘤。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e35c/10967122/dc394ae87fc6/12880_2024_1244_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验