Tsai Ming-Chen, Chu Sheng-Yuan, Kao Po-Ching
Department of Electrical Engineering, National Cheng Kung University, Tainan 70101, Taiwan.
Department of Electrophysics, National Chiayi University, Chiayi 60004, Taiwan.
Materials (Basel). 2024 Mar 7;17(6):1238. doi: 10.3390/ma17061238.
Perovskite thin films directly impact solar cell properties, making defect reduction crucial in perovskite solar cell research. In our study, we used perovskite quantum dots in the anti-solvent to act as nucleation centers in MAPbI3 thin films. These centers had lower nucleation barriers than homogeneous nucleation, improving perovskite crystallinity, reducing defects, and extending carrier lifetime. Fine-tuning the energy band also enhanced carrier transport. The most effective results were obtained using CsPb(Br I) perovskite quantum dots. The resulting device, ITO/SnO/MAPbI (300 nm)/spiro-OMeTAD (200 nm)/Ag (100 nm), achieved a 12.88% power conversion efficiency, a 16% increase from the standard element. The modified device maintained approximately 95% of its efficiency over 100 h in a 70% humidity environment.
钙钛矿薄膜直接影响太阳能电池的性能,因此减少缺陷在钙钛矿太阳能电池研究中至关重要。在我们的研究中,我们在反溶剂中使用钙钛矿量子点作为MAPbI3薄膜中的成核中心。这些中心具有比均匀成核更低的成核势垒,提高了钙钛矿的结晶度,减少了缺陷,并延长了载流子寿命。微调能带也增强了载流子传输。使用CsPb(Br I)钙钛矿量子点获得了最有效的结果。由此制成的器件ITO/SnO/MAPbI(300纳米)/螺环-OMeTAD(200纳米)/Ag(100纳米)实现了12.88%的功率转换效率,比标准元件提高了16%。在70%湿度环境下,经过改进的器件在100小时内保持了约95%的效率。