Environment Research Institute, Shandong University, Qingdao 266237, China.
Shenzhen Research Institute of Shandong University, Shenzhen 518057, China.
Int J Mol Sci. 2024 Mar 20;25(6):3485. doi: 10.3390/ijms25063485.
Silica (SiO), accounting for the main component of fly ash, plays a vital role in the heterogeneous formation of polychlorinated thianthrenes/dibenzothiophenes (PCTA/DTs) in high-temperature industrial processes. Silica clusters, as the basic units of silica, provide reasonable models to understand the general trends of complex surface reactions. Chlorothiophenols (CTPs) are the most crucial precursors for PCTA/DT formation. By employing density functional theory, this study examined the formation of 2-chlorothiophenolate from 2-CTP adsorbed on the dehydrated silica cluster ((SiO)) and the hydroxylated silica cluster ((SiO)OH). Additionally, this study investigated the formation of pre-PCTA/DTs, the crucial intermediates involved in PCTA/DT formation, from the coupling of two adsorbed 2-chlorothiophenolates via the Langmuir-Hinshelwood (L-H) mechanism and the coupling of adsorbed 2-chlorothiophenolate with gas-phase 2-CTP via the Eley-Rideal (E-R) mechanism on silica clusters. Moreover, the rate constants for the main elementary steps were calculated over the temperature range of 600-1200 K. Our study demonstrates that the 2-CTP is more likely to adsorb on the termination of the dehydrated silica cluster, which exhibits more effective catalysis in the formation of 2-chlorothiophenolate compared with the hydroxylated silica cluster. Moreover, the E-R mechanism mainly contributes to the formation of pre-PCTAs, whereas the L-H mechanism is prone to the formation of pre-PCDTs on dehydrated and hydroxylated silica clusters. Silica can act as a relatively mild catalyst in facilitating the heterogeneous formation of pre-PCTA/DTs from 2-CTP. This research provides new insights into the surface-mediated generation of PCTA/DTs, further providing theoretical foundations to reduce dioxin emission and establish dioxin control strategies.
二氧化硅(SiO)是飞灰的主要成分,在高温工业过程中多氯噻吩/二苯并噻吩(PCTA/ DTs)的多相形成中起着至关重要的作用。二氧化硅团簇作为二氧化硅的基本单元,为理解复杂表面反应的一般趋势提供了合理的模型。氯噻酚(CTPs)是 PCTA/DT 形成的最关键前体。本研究采用密度泛函理论,考察了 2-氯噻酚盐在脱水二氧化硅团簇((SiO))和羟基化二氧化硅团簇((SiO)OH)上从 2-CTP 吸附形成的过程。此外,本研究还研究了通过 Langmuir-Hinshelwood(L-H)机制和通过 Eley-Rideal(E-R)机制在二氧化硅团簇上吸附的 2-氯噻酚盐与气相 2-CTP 之间的偶联,从两个吸附的 2-氯噻酚盐形成预 PCTA/DTs(PCTA/DT 形成过程中的关键中间体)的过程。此外,还在 600-1200 K 的温度范围内计算了主要基元步骤的速率常数。本研究表明,2-CTP 更有可能吸附在脱水二氧化硅团簇的末端,与羟基化二氧化硅团簇相比,其在 2-氯噻酚盐的形成中表现出更有效的催化作用。此外,E-R 机制主要有助于预 PCTAs 的形成,而 L-H 机制则倾向于在脱水和羟基化二氧化硅团簇上形成预 PCDTs。二氧化硅可以作为一种相对温和的催化剂,促进 2-CTP 从多氯噻吩/二苯并噻吩前体的异相形成。本研究为 PCTA/DTs 的表面介导生成提供了新的见解,为减少二恶英排放和建立二恶英控制策略提供了理论基础。