Suppr超能文献

SANS-CNN:一种利用宇航员成像数据针对太空飞行相关神经-眼部综合征的自动化机器学习技术。

SANS-CNN: An automated machine learning technique for spaceflight associated neuro-ocular syndrome with astronaut imaging data.

作者信息

Kamran Sharif Amit, Hossain Khondker Fariha, Ong Joshua, Zaman Nasif, Waisberg Ethan, Paladugu Phani, Lee Andrew G, Tavakkoli Alireza

机构信息

Human-Machine Perception Laboratory, Department of Computer Science and Engineering, University of Nevada, Reno, Reno, NV, US.

Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, MI, US.

出版信息

NPJ Microgravity. 2024 Mar 28;10(1):40. doi: 10.1038/s41526-024-00364-w.

Abstract

Spaceflight associated neuro-ocular syndrome (SANS) is one of the largest physiologic barriers to spaceflight and requires evaluation and mitigation for future planetary missions. As the spaceflight environment is a clinically limited environment, the purpose of this research is to provide automated, early detection and prognosis of SANS with a machine learning model trained and validated on astronaut SANS optical coherence tomography (OCT) images. In this study, we present a lightweight convolutional neural network (CNN) incorporating an EfficientNet encoder for detecting SANS from OCT images titled "SANS-CNN." We used 6303 OCT B-scan images for training/validation (80%/20% split) and 945 for testing with a combination of terrestrial images and astronaut SANS images for both testing and validation. SANS-CNN was validated with SANS images labeled by NASA to evaluate accuracy, specificity, and sensitivity. To evaluate real-world outcomes, two state-of-the-art pre-trained architectures were also employed on this dataset. We use GRAD-CAM to visualize activation maps of intermediate layers to test the interpretability of SANS-CNN's prediction. SANS-CNN achieved 84.2% accuracy on the test set with an 85.6% specificity, 82.8% sensitivity, and 84.1% F1-score. Moreover, SANS-CNN outperforms two other state-of-the-art pre-trained architectures, ResNet50-v2 and MobileNet-v2, in accuracy by 21.4% and 13.1%, respectively. We also apply two class-activation map techniques to visualize critical SANS features perceived by the model. SANS-CNN represents a CNN model trained and validated with real astronaut OCT images, enabling fast and efficient prediction of SANS-like conditions for spaceflight missions beyond Earth's orbit in which clinical and computational resources are extremely limited.

摘要

航天相关神经-眼部综合征(SANS)是航天领域最大的生理障碍之一,对于未来的行星任务需要进行评估和缓解。由于航天环境在临床上存在限制,本研究的目的是通过在宇航员SANS光学相干断层扫描(OCT)图像上训练和验证的机器学习模型,实现对SANS的自动早期检测和预后评估。在本研究中,我们提出了一种轻量级卷积神经网络(CNN),它结合了EfficientNet编码器,用于从OCT图像中检测SANS,名为“SANS-CNN”。我们使用6303张OCT B扫描图像进行训练/验证(80%/20%分割),并使用945张图像进行测试,测试和验证均使用地面图像与宇航员SANS图像的组合。SANS-CNN通过美国国家航空航天局(NASA)标记的SANS图像进行验证,以评估准确性、特异性和敏感性。为了评估实际效果,还在该数据集上采用了两种最先进的预训练架构。我们使用梯度加权类激活映射(GRAD-CAM)来可视化中间层的激活图,以测试SANS-CNN预测的可解释性。SANS-CNN在测试集上的准确率达到84.2%,特异性为85.6%,敏感性为82.8%,F1分数为84.1%。此外,SANS-CNN在准确性方面分别比另外两种最先进的预训练架构ResNet50-v2和MobileNet-v2高出21.4%和13.1%。我们还应用了两种类激活映射技术来可视化模型感知到的关键SANS特征。SANS-CNN是一个用真实宇航员OCT图像训练和验证的CNN模型,能够在临床和计算资源极其有限的地球轨道以外的航天任务中快速有效地预测类似SANS的情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb5e/10978911/67a9e38884a7/41526_2024_364_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验