Suppr超能文献

理性忽视:一种新的神经多样性信息寻求理论。

Rational inattention: A new theory of neurodivergent information seeking.

机构信息

Department of Psychology, Bangor University, Bangor, UK.

Department of Psychology, Lancaster University, Lancaster, UK.

出版信息

Dev Sci. 2024 Jul;27(4):e13492. doi: 10.1111/desc.13492. Epub 2024 Mar 29.

Abstract

This paper presents rational inattention as a new, transdiagnostic theory of information seeking in neurodevelopmental conditions that have uneven cognitive and socio-emotional profiles, including developmental language disorder (DLD), dyslexia, dyscalculia and autism. Rational inattention holds that the optimal solution to minimizing epistemic uncertainty is to avoid imprecise information sources. The key theoretical contribution of this report is to endogenize imprecision, making it a function of the primary neurocognitive difficulties that have been invoked to explain neurodivergent phenotypes, including deficits in auditory perception, working memory, procedural learning and the social brain network. We argue that disengagement with information sources with low endogenous precision (e.g. speech in DLD, orthography-phonology mappings in dyslexia, numeric stimuli in dyscalculia and social signals in autism) constitutes resource-rational behaviour. We demonstrate the strength of this account in a series of computational simulations. In experiment 1, we simulate information seeking in artificial agents mimicking an array of neurodivergent phenotypes, which optimally explore a complex learning environment containing speech, text, numeric stimuli and social cues. In experiment 2, we simulate optimal information seeking in a cross-modal dual-task paradigm and qualitatively replicate empirical data from children with and without DLD. Across experiments, simulated agents' only aim was to maximally reduce epistemic uncertainty, with no difference in reward across information sources. We show that rational inattention emerges naturally in specific neurodivergent phenotypes as a function of low endogenous precision. For instance, an agent mimicking the DLD phenotype disengages with speech (and preferentially engages with alternative precise information sources) because endogenous imprecision renders speech not conducive to information gain. Because engagement is necessary for learning, simulation demonstrates how optimal information seeking may paradoxically contribute negatively to an already delayed learning trajectory in neurodivergent children. RESEARCH HIGHLIGHTS: We present the first comprehensive theory of information seeking in neurodivergent children to date, centred on the notion of rational inattention. We demonstrate the strength of this account in a series of computational simulations involving artificial agents mimicking specific neurodivergent phenotypes that optimally explore a complex learning environment containing speech, text, numeric stimuli, and social cues. We show how optimal information seeking may, paradoxically, contribute negatively to an already delayed learning trajectory in neurodivergent children. This report advances our understanding of the factors shaping short-term decision making and long-term learning in neurodivergent children.

摘要

本文提出理性忽视是一种新的、跨诊断的信息寻求理论,适用于认知和社会情感特征不均等的神经发育状况,包括发育性语言障碍(DLD)、阅读障碍、计算障碍和自闭症。理性忽视认为,最小化认知不确定性的最佳解决方案是避免不准确的信息源。本报告的主要理论贡献是将不精确性内生化,使其成为解释神经多样性表型的主要神经认知困难的函数,包括听觉感知、工作记忆、程序学习和社会大脑网络的缺陷。我们认为,与低内源性精度的信息源脱节(例如 DLD 中的言语、阅读障碍中的正字法-语音映射、计算障碍中的数字刺激和自闭症中的社会信号)构成了资源理性行为。我们通过一系列计算模拟证明了这一说法的强度。在实验 1 中,我们模拟了模仿一系列神经多样性表型的人工代理的信息寻求,这些代理在包含言语、文本、数字刺激和社会线索的复杂学习环境中最佳地探索。在实验 2 中,我们模拟了跨模态双任务范式中的最佳信息寻求,并定性复制了具有和不具有 DLD 的儿童的实验数据。在所有实验中,模拟代理的唯一目标是最大限度地减少认知不确定性,而信息源之间没有奖励差异。我们表明,理性忽视自然出现在特定的神经多样性表型中,作为低内源性精度的函数。例如,模仿 DLD 表型的代理与言语脱节(并优先与其他精确的信息源接触),因为内源性不精确性使得言语不利于信息获取。由于参与是学习所必需的,模拟演示了最佳信息寻求如何可能矛盾地对神经发育障碍儿童已经延迟的学习轨迹产生负面影响。研究亮点:我们目前提出了关于神经发育障碍儿童信息寻求的第一个全面理论,该理论以理性忽视的概念为中心。我们通过一系列涉及模仿特定神经多样性表型的人工代理的计算模拟证明了这一说法的强度,这些代理在包含言语、文本、数字刺激和社会线索的复杂学习环境中最佳地探索。我们展示了最佳信息寻求如何可能矛盾地对神经发育障碍儿童已经延迟的学习轨迹产生负面影响。本报告增进了我们对塑造神经发育障碍儿童短期决策和长期学习的因素的理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验