Suppr超能文献

具有随机重置的相互作用粒子系统的全局密度方程:从过阻尼布朗运动到相位同步

Global density equations for interacting particle systems with stochastic resetting: From overdamped Brownian motion to phase synchronization.

作者信息

Bressloff Paul C

机构信息

Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom.

出版信息

Chaos. 2024 Apr 1;34(4). doi: 10.1063/5.0196626.

Abstract

A wide range of phenomena in the natural and social sciences involve large systems of interacting particles, including plasmas, collections of galaxies, coupled oscillators, cell aggregations, and economic "agents." Kinetic methods for reducing the complexity of such systems typically involve the derivation of nonlinear partial differential equations for the corresponding global densities. In recent years, there has been considerable interest in the mean field limit of interacting particle systems with long-range interactions. Two major examples are interacting Brownian particles in the overdamped regime and the Kuramoto model of coupled phase oscillators. In this paper, we analyze these systems in the presence of local or global stochastic resetting, where the position or phase of each particle independently or simultaneously resets to its original value at a random sequence of times generated by a Poisson process. In each case, we derive the Dean-Kawasaki (DK) equation describing hydrodynamic fluctuations of the global density and then use a mean field ansatz to obtain the corresponding nonlinear McKean-Vlasov (MV) equation in the thermodynamic limit. In particular, we show how the MV equation for global resetting is driven by a Poisson noise process, reflecting the fact that resetting is common to all of the particles and, thus, induces correlations that cannot be eliminated by taking a mean field limit. We then investigate the effects of local and global resetting on nonequilibrium stationary solutions of the macroscopic dynamics and, in the case of the Kuramoto model, the reduced dynamics on the Ott-Antonsen manifold.

摘要

自然科学和社会科学中的广泛现象涉及相互作用粒子的大系统,包括等离子体、星系团、耦合振子、细胞聚集体和经济“主体”。用于降低此类系统复杂性的动力学方法通常涉及推导相应全局密度的非线性偏微分方程。近年来,具有长程相互作用的相互作用粒子系统的平均场极限受到了相当大的关注。两个主要例子是过阻尼状态下的相互作用布朗粒子和耦合相位振子的Kuramoto模型。在本文中,我们分析了存在局部或全局随机重置情况下的这些系统,其中每个粒子的位置或相位在由泊松过程生成的随机时间序列上独立或同时重置为其原始值。在每种情况下,我们推导描述全局密度流体动力学涨落的Dean-Kawasaki(DK)方程,然后使用平均场假设在热力学极限下获得相应的非线性McKean-Vlasov(MV)方程。特别地,我们展示了全局重置的MV方程是如何由泊松噪声过程驱动的,这反映了重置对所有粒子都是共同的这一事实,因此会诱导出无法通过取平均场极限消除的相关性。然后,我们研究局部和全局重置对宏观动力学非平衡稳态解的影响,并且在Kuramoto模型的情况下,研究Ott-Antonsen流形上的简化动力学。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验