Suppr超能文献

“无处安全,无人幸免”:对2023年10月7日至11月22日以色列军事行动第一阶段加沙地带关键民用基础设施受损情况的空间分析

'Nowhere and no one is safe': spatial analysis of damage to critical civilian infrastructure in the Gaza Strip during the first phase of the Israeli military campaign, 7 October to 22 November 2023.

作者信息

Asi Yara, Mills David, Greenough P Gregg, Kunichoff Dennis, Khan Saira, Hoek Jamon Van Den, Scher Corey, Halabi Saleem, Abdulrahim Sawsan, Bahour Nadine, Ahmed A Kayum, Wispelwey Bram, Hammoudeh Weeam

机构信息

FXB Center for Health and Human Rights, Harvard University, Boston, USA.

School of Global Health Management and Informatics, University of Central Florida, Orlando, USA.

出版信息

Confl Health. 2024 Apr 2;18(1):24. doi: 10.1186/s13031-024-00580-x.

Abstract

BACKGROUND

Since the Hamas attacks in Israel on 7 October 2023, the Israeli military has launched an assault in the Gaza Strip, which included over 12,000 targets struck and over 25,000 tons of incendiary munitions used by 2 November 2023. The objectives of this study include: (1) the descriptive and inferential spatial analysis of damage to critical civilian infrastructure (health, education, and water facilities) across the Gaza Strip during the first phase of the military campaign, defined as 7 October to 22 November 2023 and (2) the analysis of damage clustering around critical civilian infrastructure to explore broader questions about Israel's adherence to International Humanitarian Law (IHL).

METHODS

We applied multi-temporal coherent change detection on Copernicus Sentinel 1-A Synthetic Aperture Radar (SAR) imagery to detect signals indicative of damage to the built environment through 22 November 2023. Specific locations of health, education, and water facilities were delineated using open-source building footprint and cross-checked with geocoded data from OCHA, OpenStreetMap, and Humanitarian OpenStreetMap Team. We then assessed the retrieval of damage at and with close proximity to sites of health, education, and water infrastructure in addition to designated evacuation corridors and civilian protection zones. The Global Moran's I autocorrelation inference statistic was used to determine whether health, education, and water facility infrastructure damage was spatially random or clustered.

RESULTS

During the period under investigation, in the entire Gaza Strip, 60.8% (n = 59) of health, 68.2% (n = 324) of education, and 42.1% (n = 64) of water facilities sustained infrastructure damage. Furthermore, 35.1% (n = 34) of health, 40.2% (n = 191) of education, and 36.8% (n = 56) of water facilities were functionally destroyed. Applying the Global Moran's I spatial inference statistic to facilities demonstrated a high degree of damage clustering for all three types of critical civilian infrastructure, with Z-scores indicating < 1% likelihood of cluster damage occurring by random chance.

CONCLUSION

Spatial statistical analysis suggests widespread damage to critical civilian infrastructure that should have been provided protection under IHL. These findings raise serious allegations about the violation of IHL, especially in light of Israeli officials' statements explicitly inciting violence and displacement and multiple widely reported acts of collective punishment.

摘要

背景

自2023年10月7日哈马斯对以色列发动袭击以来,以色列军队在加沙地带发起了攻击,截至2023年11月2日,已打击了超过12000个目标,并使用了超过25000吨燃烧弹药。本研究的目标包括:(1)对军事行动第一阶段(定义为2023年10月7日至11月22日)加沙地带关键民用基础设施(卫生、教育和供水设施)的破坏情况进行描述性和推断性空间分析;(2)分析关键民用基础设施周围的破坏聚集情况,以探讨关于以色列是否遵守国际人道法(IHL)的更广泛问题。

方法

我们对哥白尼哨兵1-A合成孔径雷达(SAR)图像应用多时相相干变化检测,以检测到2023年11月22日为止表明建筑环境受损的信号。利用开源建筑足迹勾勒出卫生、教育和供水设施的具体位置,并与来自联合国人道协调厅、开放街道地图和人道主义开放街道地图团队的地理编码数据进行交叉核对。然后,我们评估了卫生、教育和供水基础设施所在地及其附近以及指定疏散走廊和平民保护区的破坏情况。使用全局莫兰指数(Global Moran's I)自相关推断统计量来确定卫生、教育和供水设施基础设施的破坏在空间上是随机的还是聚集的。

结果

在调查期间,在整个加沙地带,60.8%(n = 59)的卫生设施、68.2%(n = 324)的教育设施和42.1%(n = 64)的供水设施遭受了基础设施破坏。此外,35.1%(n = 34)的卫生设施、40.2%(n = 191)的教育设施和36.8%(n = 56)的供水设施功能被毁。对设施应用全局莫兰指数空间推断统计量表明,所有三种关键民用基础设施的破坏都高度聚集,Z分数表明随机发生聚集破坏的可能性小于1%。

结论

空间统计分析表明,关键民用基础设施遭到广泛破坏,而这些设施本应受到国际人道法的保护。这些发现引发了关于违反国际人道法的严重指控,特别是鉴于以色列官员明确煽动暴力和流离失所的声明以及多次广泛报道的集体惩罚行为。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b64a/10985964/7f726f060695/13031_2024_580_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验