Bigelow Laboratory for Ocean Sciences, East Boothbay, ME 04544.
Division of Hydrologic Sciences, Desert Research Institute, Las Vegas, NV 89119.
Proc Natl Acad Sci U S A. 2024 Apr 9;121(15):e2309636121. doi: 10.1073/pnas.2309636121. Epub 2024 Apr 4.
Rates of microbial processes are fundamental to understanding the significance of microbial impacts on environmental chemical cycling. However, it is often difficult to quantify rates or to link processes to specific taxa or individual cells, especially in environments where there are few cultured representatives with known physiology. Here, we describe the use of the redox-enzyme-sensitive molecular probe RedoxSensor™ Green to measure rates of anaerobic electron transfer physiology (i.e., sulfate reduction and methanogenesis) in individual cells and link those measurements to genomic sequencing of the same single cells. We used this method to investigate microbial activity in hot, anoxic, low-biomass (~10 cells mL) groundwater of the Death Valley Regional Flow System, California. Combining this method with electron donor amendment experiments and metatranscriptomics confirmed that the abundant spore formers including Desulforudis audaxviator were actively reducing sulfate in this environment, most likely with acetate and hydrogen as electron donors. Using this approach, we measured environmental sulfate reduction rates at 0.14 to 26.9 fmol cell h. Scaled to volume, this equates to a bulk environmental rate of ~10 pmol sulfate L d, similar to potential rates determined with radiotracer methods. Despite methane in the system, there was no evidence for active microbial methanogenesis at the time of sampling. Overall, this method is a powerful tool for estimating species-resolved, single-cell rates of anaerobic metabolism in low-biomass environments while simultaneously linking genomes to phenomes at the single-cell level. We reveal active elemental cycling conducted by several species, with a large portion attributable to Desulforudis audaxviator.
微生物过程的速率对于理解微生物对环境化学循环的影响至关重要。然而,通常很难量化速率,或者将过程与特定的分类群或单个细胞联系起来,尤其是在那些培养出来的具有已知生理学特性的代表物种较少的环境中。在这里,我们描述了使用氧化还原酶敏感的分子探针 RedoxSensor™ Green 来测量单个细胞中厌氧电子传递生理学(即硫酸盐还原和产甲烷作用)的速率,并将这些测量结果与同一单个细胞的基因组测序联系起来。我们使用这种方法来研究加利福尼亚死亡谷区域流系统中热、缺氧、低生物量(~10 个细胞 mL)地下水的微生物活性。将这种方法与电子供体添加实验和宏转录组学相结合,证实了包括 Desulforudis audaxviator 在内的丰富孢子形成体正在积极还原硫酸盐,最有可能的电子供体是乙酸盐和氢气。使用这种方法,我们测量了环境中硫酸盐还原的速率为 0.14 至 26.9 fmol 细胞 h。按体积换算,这相当于环境中硫酸盐的批量还原速率约为 10 pmol L d,与放射性示踪剂方法确定的潜在速率相似。尽管系统中存在甲烷,但在采样时没有证据表明存在活跃的微生物产甲烷作用。总的来说,这种方法是一种强大的工具,可以在低生物量环境中估计物种分辨的、单个细胞的厌氧代谢速率,同时在单细胞水平上将基因组与表型联系起来。我们揭示了几种物种进行的活跃的元素循环,其中很大一部分归因于 Desulforudis audaxviator。