Lindner Cristian, Riquelme Raúl, San Martín Rodrigo, Quezada Frank, Valenzuela Jorge, Maureira Juan P, Einersen Martín
Department of Radiology, Faculty of Medicine, University of Concepción, Concepción 4030000, Chile.
Department of Radiology, Hospital Clínico Regional Guillermo Grant Benavente, Concepción 4030000, Chile.
World J Transplant. 2024 Mar 18;14(1):88938. doi: 10.5500/wjt.v14.i1.88938.
Hepatic artery thrombosis (HAT) is a devastating vascular complication following liver transplantation, requiring prompt diagnosis and rapid revascularization treatment to prevent graft loss. At present, imaging modalities such as ultrasound, computed tomography, and magnetic resonance play crucial roles in diagnosing HAT. Although imaging techniques have improved sensitivity and specificity for HAT diagnosis, they have limitations that hinder the timely diagnosis of this complication. In this sense, the emergence of artificial intelligence (AI) presents a transformative opportunity to address these diagnostic limitations. The develo pment of machine learning algorithms and deep neural networks has demon strated the potential to enhance the precision diagnosis of liver transplant com plications, enabling quicker and more accurate detection of HAT. This article examines the current landscape of imaging diagnostic techniques for HAT and explores the emerging role of AI in addressing future challenges in the diagnosis of HAT after liver transplant.
肝动脉血栓形成(HAT)是肝移植后一种严重的血管并发症,需要及时诊断并迅速进行血管重建治疗以防止移植物丢失。目前,超声、计算机断层扫描和磁共振等成像方式在诊断HAT中发挥着关键作用。尽管成像技术提高了HAT诊断的敏感性和特异性,但它们存在局限性,阻碍了对这种并发症的及时诊断。从这个意义上说,人工智能(AI)的出现为解决这些诊断局限性带来了变革性机遇。机器学习算法和深度神经网络的发展已证明有潜力提高肝移植并发症的精准诊断,能够更快、更准确地检测出HAT。本文探讨了目前HAT成像诊断技术的现状,并探讨了AI在应对肝移植后HAT诊断未来挑战方面的新作用。