Suppr超能文献

利用人工智能基于临床级可穿戴传感器输入数据开发预测咳嗽和经聚合酶链反应(PCR)确诊的 COVID-19 感染的算法。

Use of artificial intelligence to develop predictive algorithms of cough and PCR-confirmed COVID-19 infections based on inputs from clinical-grade wearable sensors.

机构信息

Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL, USA.

Sibel Health, Chicago, USA.

出版信息

Sci Rep. 2024 Apr 5;14(1):8072. doi: 10.1038/s41598-024-57830-4.

Abstract

There have been over 769 million cases of COVID-19, and up to 50% of infected individuals are asymptomatic. The purpose of this study aimed to assess the use of a clinical-grade physiological wearable monitoring system, ANNE One, to develop an artificial intelligence algorithm for (1) cough detection and (2) early detection of COVID-19, through the retrospective analysis of prospectively collected physiological data from longitudinal wear of ANNE sensors in a multicenter single arm study of subjects at high risk for COVID-19 due to occupational or home exposures. The study employed a two-fold approach: cough detection algorithm development and COVID-19 detection algorithm development. For cough detection, healthy individuals wore an ANNE One chest sensor during scripted activity. The final performance of the algorithm achieved an F-1 score of 83.3% in twenty-seven healthy subjects during biomarker validation. In the COVID-19 detection algorithm, individuals at high-risk for developing COVID-19 because of recent exposures received ANNE One sensors and completed daily symptom surveys. An algorithm analyzing vital parameters (heart rate, respiratory rate, cough count, etc.) for early COVID-19 detection was developed. The COVID-19 detection algorithm exhibited a sensitivity of 0.47 and specificity of 0.72 for detecting COVID-19 in 325 individuals with recent exposures. Participants demonstrated high adherence (≥ 4 days of wear per week). ANNE One shows promise for detection of COVID-19. Inclusion of respiratory biomarkers (e.g., cough count) enhanced the algorithm's predictive ability. These findings highlight the potential value of wearable devices in early disease detection and monitoring.

摘要

已有超过 7.69 亿例 COVID-19 病例,其中多达 50%的感染者无症状。本研究旨在评估使用临床级生理可穿戴监测系统 ANNE One 开发人工智能算法,用于 (1) 咳嗽检测和 (2) 通过前瞻性收集 COVID-19 高风险个体的生理数据进行 COVID-19 的早期检测,这些个体由于职业或家庭暴露而进行纵向佩戴 ANNE 传感器的多中心单臂研究。该研究采用了两阶段方法:咳嗽检测算法开发和 COVID-19 检测算法开发。对于咳嗽检测,健康个体在规定的活动中佩戴 ANNE One 胸部传感器。在对 27 名健康个体进行生物标志物验证时,算法的最终性能达到了 83.3%的 F-1 评分。在 COVID-19 检测算法中,由于最近暴露而有发展 COVID-19 风险的个体接受 ANNE One 传感器并完成每日症状调查。开发了一种分析生命参数(心率、呼吸率、咳嗽次数等)以进行早期 COVID-19 检测的算法。该 COVID-19 检测算法在最近暴露的 325 名个体中检测 COVID-19 的敏感性为 0.47,特异性为 0.72。参与者表现出高度的依从性(每周佩戴≥4 天)。ANNE One 显示出检测 COVID-19 的潜力。包含呼吸生物标志物(例如,咳嗽次数)增强了算法的预测能力。这些发现强调了可穿戴设备在早期疾病检测和监测中的潜在价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89ce/10997665/4d180bfba7e9/41598_2024_57830_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验