Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China.
Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Intelligent Psychological Evaluation and Engineering Technology Research Center, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China.
Cell Metab. 2024 May 7;36(5):1000-1012.e6. doi: 10.1016/j.cmet.2024.03.010. Epub 2024 Apr 5.
The gut-brain axis is implicated in depression development, yet its underlying mechanism remains unclear. We observed depleted gut bacterial species, including Bifidobacterium longum and Roseburia intestinalis, and the neurotransmitter homovanillic acid (HVA) in individuals with depression and mouse depression models. Although R. intestinalis does not directly produce HVA, it enhances B. longum abundance, leading to HVA generation. This highlights a synergistic interaction among gut microbiota in regulating intestinal neurotransmitter production. Administering HVA, B. longum, or R. intestinalis to mouse models with chronic unpredictable mild stress (CUMS) and corticosterone (CORT)-induced depression significantly improved depressive symptoms. Mechanistically, HVA inhibited synaptic autophagic death by preventing excessive degradation of microtubule-associated protein 1 light chain 3 (LC3) and SQSTM1/p62 proteins, protecting hippocampal neurons' presynaptic membrane. These findings underscore the role of the gut microbial metabolism in modulating synaptic integrity and provide insights into potential novel treatment strategies for depression.
肠脑轴与抑郁症的发展有关,但其中的潜在机制尚不清楚。我们观察到抑郁症患者和小鼠抑郁模型中存在肠道细菌种类减少,包括长双歧杆菌和罗斯伯里氏菌,以及神经递质高香草酸(HVA)。虽然罗斯伯里氏菌不会直接产生 HVA,但它可以增强长双歧杆菌的丰度,从而导致 HVA 的产生。这突出了肠道微生物群在调节肠道神经递质产生方面的协同相互作用。向慢性不可预测轻度应激(CUMS)和皮质酮(CORT)诱导的抑郁小鼠模型中给予 HVA、长双歧杆菌或罗斯伯里氏菌,可显著改善抑郁症状。从机制上讲,HVA 通过防止微管相关蛋白 1 轻链 3(LC3)和 SQSTM1/p62 蛋白的过度降解来抑制突触自噬性死亡,从而保护海马神经元的突触前膜。这些发现强调了肠道微生物代谢在调节突触完整性中的作用,并为抑郁症的潜在新治疗策略提供了思路。