Suppr超能文献

成人超重和肥胖的药物治疗:随机对照试验的系统评价和网络荟萃分析。

Pharmacotherapy for adults with overweight and obesity: a systematic review and network meta-analysis of randomised controlled trials.

机构信息

Department of Endocrinology and Metabolism and Department of Guideline and Rapid Recommendation, Cochrane China Center, MAGIC China Center, Chinese Evidence-Based Medicine Center, West China Hospital, Sichuan University, Chengdu, China.

Center of Gerontology and Geriatrics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China; Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, ON, Canada.

出版信息

Lancet. 2024 Apr 6;403(10434):e21-e31. doi: 10.1016/S0140-6736(24)00351-9.

Abstract

BACKGROUND

Pharmacotherapy provides an option for adults with overweight and obesity to reduce their bodyweight if lifestyle modifications fail. We summarised the latest evidence for the benefits and harms of weight-lowering drugs.

METHODS

This systematic review and network meta-analysis included searches of PubMed, Embase, and Cochrane Library (CENTRAL) from inception to March 23, 2021, for randomised controlled trials of weight-lowering drugs in adults with overweight and obesity. We performed frequentist random-effect network meta-analyses to summarise the evidence and applied the Grading of Recommendations Assessment, Development, and Evaluation frameworks to rate the certainty of evidence, calculate the absolute effects, categorise interventions, and present the findings. The study was registered with PROSPERO, CRD 42021245678.

FINDINGS

14 605 citations were identified by our search, of which 132 eligible trials enrolled 48 209 participants. All drugs lowered bodyweight compared with lifestyle modification alone; all subsequent numbers refer to comparisons with lifestyle modification. High to moderate certainty evidence established phentermine-topiramate as the most effective in lowering weight (odds ratio [OR] of ≥5% weight reduction 8·02, 95% CI 5·24 to 12·27; mean difference [MD] of percentage bodyweight change -7·98, 95% CI -9·27 to -6·69) followed by GLP-1 receptor agonists (OR 6·33, 95% CI 5·00 to 8·00; MD -5·79, 95% CI -6·34 to -5·25). Naltrexone-bupropion (OR 2·69, 95% CI 2·10 to 3·44), phentermine-topiramate (2·40, 1·68 to 3·44), GLP-1 receptor agonists (2·22, 1·74 to 2·84), and orlistat (1·71, 1·42 to 2·05) were associated with increased adverse events leading to drug discontinuation. In a post-hoc analysis, semaglutide, a GLP-1 receptor agonist, showed substantially larger benefits than other drugs with a similar risk of adverse events as other drugs for both likelihood of weight loss of 5% or more (OR 9·82, 95% CI 7·09 to 13·61) and percentage bodyweight change (MD -11·40, 95% CI -12·51 to -10·29).

INTERPRETATION

In adults with overweight and obesity, phentermine-topiramate and GLP-1 receptor agonists proved the best drugs in reducing weight; of the GLP-1 agonists, semaglutide might be the most effective.

FUNDING

1.3.5 Project for Disciplines of Excellence, West China Hospital, Sichuan University.

摘要

背景

如果生活方式改变失败,药物治疗为超重和肥胖的成年人提供了一种降低体重的选择。我们总结了最新的减重药物的获益和危害证据。

方法

这项系统评价和网络荟萃分析纳入了从成立到 2021 年 3 月 23 日在 PubMed、Embase 和 Cochrane Library(CENTRAL)中对超重和肥胖成年人进行减重药物的随机对照试验的检索。我们进行了频率论随机效应网络荟萃分析来总结证据,并应用推荐评估、制定与评估框架(Grading of Recommendations Assessment, Development, and Evaluation)来评估证据的确定性,计算绝对效果,对干预措施进行分类,并呈现研究结果。该研究在 PROSPERO 上注册,CRD42021245678。

发现

我们的搜索共确定了 14605 条引文,其中 132 项合格试验纳入了 48209 名参与者。所有药物与生活方式改变单独相比均降低了体重;所有后续数字均指与生活方式改变相比。高到中等确定性证据表明,苯丁胺/托吡酯(OR≥5%体重减轻率 8.02,95%CI5.24-12.27;体重百分比变化的 MD-7.98,95%CI-9.27 至-6.69)是最有效的减重药物,其次是 GLP-1 受体激动剂(OR6.33,95%CI5.00-8.00;MD-5.79,95%CI-6.34 至-5.25)。纳曲酮/安非他酮(OR2.69,95%CI2.10-3.44)、苯丁胺/托吡酯(2.40,1.68-3.44)、GLP-1 受体激动剂(2.22,1.74-2.84)和奥利司他(1.71,1.42-2.05)与导致药物停药的不良事件增加相关。在事后分析中,GLP-1 受体激动剂司美格鲁肽的获益明显大于其他药物,与其他药物相比,具有相似的不良事件风险,对于体重减轻 5%或更多(OR9.82,95%CI7.09-13.61)和体重百分比变化(MD-11.40,95%CI-12.51-10.29)也有更大的效果。

解释

在超重和肥胖的成年人中,苯丁胺/托吡酯和 GLP-1 受体激动剂被证明是降低体重的最佳药物;在 GLP-1 激动剂中,司美格鲁肽可能是最有效的。

资金

1.3.5 项目学科卓越计划,四川大学华西医院。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验