Van Cleave Janet H, Concert Catherine, Kamberi Maria, Zahriah Elise, Most Allison, Mojica Jacqueline, Riccobene Ann, Russo Nora, Liang Eva, Hu Kenneth S, Jacobson Adam S, Li Zujun, Moses Lindsey E, Persky Michael J, Persky Mark S, Tran Theresa, Brody Abraham A, Kim Arum, Egleston Brian L
NYU Meyers College of Nursing (JH Van Cleave, E Liang, AA Brody); NYU Langone Perlmutter Cancer Center, Department of Radiation Oncology (C Concert); NYU Langone Perlmutter Cancer Center, Department of Head and Neck Surgical Oncology (M Kamberi, A Most, J Mojica, N Russo); NYU Langone Perlmutter Cancer Center, Department of Medical Oncology (E Zahriah, A Riccobene); NYU Grossman School of Medicine, Department of Radiation Oncology (KS Hu); NYU Grossman School of Medicine, Department of Otolaryngology - Head and Neck Surgery (AS Jacobson, LE Moses, MJ Persky, MS Persky, T Tran); NYU Grossman School of Medicine, Department of Medicine (AA Brody, Z Li, A Kim).
Cancer Care Res Online. 2024 Jan;4(1). doi: 10.1097/cr9.0000000000000051. Epub 2023 Nov 22.
Patients with head and neck cancer (HNC) often experience high symptom burden leading to lower quality of life (QoL).
This study aims to conceptually model optimal cutpoint by examining where total number of patient-reported symptoms exceeds patients' coping capacity, leading to a decline in QoL in patients with HNC.
Secondary data analysis of 105 individuals with HNC enrolled in a clinical usefulness study of the NYU Electronic Patient Visit Assessment (ePVA)©, a digital patient-reported symptom measure. Patients completed ePVA and European Organization for Research and Treatment of Cancer (EORTC©) QLQ-C30 v3.0. The total number of patient-reported symptoms was the sum of symptoms as identified by the ePVA questionnaire. Analysis of variance (ANOVA) was used to define optimal cutpoint.
Study participants had a mean age of 61.5, were primarily male (67.6%), and had Stage IV HNC (53.3%). The cutpoint of 10 symptoms was associated with significant decline of QoL (F= 44.8, <.0001), dividing the population into categories of low symptom burden (< 10 symptoms) and high symptom burden (≥ 10 symptoms). Analyses of EORTC function subscales supported the validity of 10 symptoms as the optimal cutpoint (Physical: F=28.3, <.0001; Role: F=21.6, <.0001; Emotional: F=9.5, =.003; Social: F=33.1, <.0001).
In HNC, defining optimal cutpoints in the total number of patient-reported symptoms is feasible.
Cutpoints in the total number of patient-reported symptoms may identify patients experiencing a high symptom burden from HNC.
Using optimal cutpoints of the total number of patient-reported symptoms may help effectively align clinical resources with patients' symptom burden.
头颈癌(HNC)患者常常承受着较高的症状负担,导致生活质量(QoL)下降。
本研究旨在通过考察患者报告的症状总数超过患者应对能力的临界点,从而导致头颈癌患者生活质量下降的情况,从概念上建立最佳临界点模型。
对105名头颈癌患者的二级数据分析,这些患者参与了纽约大学电子患者就诊评估(ePVA)©的临床效用研究,这是一种数字化的患者报告症状测量方法。患者完成了ePVA和欧洲癌症研究与治疗组织(EORTC©)QLQ-C30 v3.0。患者报告的症状总数是ePVA问卷所确定症状的总和。采用方差分析(ANOVA)来确定最佳临界点。
研究参与者的平均年龄为61.5岁,主要为男性(67.6%),患有IV期头颈癌(53.3%)。10个症状的临界点与生活质量的显著下降相关(F = 44.8,<.0001),将人群分为低症状负担(<10个症状)和高症状负担(≥10个症状)两类。对EORTC功能子量表的分析支持将10个症状作为最佳临界点的有效性(身体:F = 28.3,<.0001;角色:F = 21.6,<.0001;情感:F = 9.5,=.003;社会:F = 33.1,<.0001)。
在头颈癌中,确定患者报告症状总数的最佳临界点是可行的。
患者报告症状总数的临界点可能识别出头颈癌中症状负担高的患者。
使用患者报告症状总数的最佳临界点可能有助于使临床资源与患者的症状负担有效匹配。