Center for Data Science, New York University, New York, NY, 10011, USA.
Prescient Design, Genentech, New York, NY, 10010, USA.
Genome Biol. 2024 Apr 8;25(1):88. doi: 10.1186/s13059-024-03226-6.
Inferring gene regulatory networks (GRNs) from single-cell data is challenging due to heuristic limitations. Existing methods also lack estimates of uncertainty. Here we present Probabilistic Matrix Factorization for Gene Regulatory Network Inference (PMF-GRN). Using single-cell expression data, PMF-GRN infers latent factors capturing transcription factor activity and regulatory relationships. Using variational inference allows hyperparameter search for principled model selection and direct comparison to other generative models. We extensively test and benchmark our method using real single-cell datasets and synthetic data. We show that PMF-GRN infers GRNs more accurately than current state-of-the-art single-cell GRN inference methods, offering well-calibrated uncertainty estimates.
从单细胞数据推断基因调控网络(GRN)具有启发式限制,因此具有挑战性。现有的方法也缺乏不确定性的估计。本文提出了基于概率矩阵分解的基因调控网络推断方法(PMF-GRN)。PMF-GRN 使用单细胞表达数据推断潜在因子,以捕获转录因子活性和调控关系。使用变分推断允许进行超参数搜索,以进行有原则的模型选择,并直接与其他生成模型进行比较。我们使用真实的单细胞数据集和合成数据对我们的方法进行了广泛的测试和基准测试。我们表明,PMF-GRN 比当前最先进的单细胞 GRN 推断方法更准确地推断出 GRN,并且提供了经过良好校准的不确定性估计。