Suppr超能文献

PMF-GRN:一种基于概率矩阵分解的单细胞基因调控网络推断的变分推理方法。

PMF-GRN: a variational inference approach to single-cell gene regulatory network inference using probabilistic matrix factorization.

机构信息

Center for Data Science, New York University, New York, NY, 10011, USA.

Prescient Design, Genentech, New York, NY, 10010, USA.

出版信息

Genome Biol. 2024 Apr 8;25(1):88. doi: 10.1186/s13059-024-03226-6.

Abstract

Inferring gene regulatory networks (GRNs) from single-cell data is challenging due to heuristic limitations. Existing methods also lack estimates of uncertainty. Here we present Probabilistic Matrix Factorization for Gene Regulatory Network Inference (PMF-GRN). Using single-cell expression data, PMF-GRN infers latent factors capturing transcription factor activity and regulatory relationships. Using variational inference allows hyperparameter search for principled model selection and direct comparison to other generative models. We extensively test and benchmark our method using real single-cell datasets and synthetic data. We show that PMF-GRN infers GRNs more accurately than current state-of-the-art single-cell GRN inference methods, offering well-calibrated uncertainty estimates.

摘要

从单细胞数据推断基因调控网络(GRN)具有启发式限制,因此具有挑战性。现有的方法也缺乏不确定性的估计。本文提出了基于概率矩阵分解的基因调控网络推断方法(PMF-GRN)。PMF-GRN 使用单细胞表达数据推断潜在因子,以捕获转录因子活性和调控关系。使用变分推断允许进行超参数搜索,以进行有原则的模型选择,并直接与其他生成模型进行比较。我们使用真实的单细胞数据集和合成数据对我们的方法进行了广泛的测试和基准测试。我们表明,PMF-GRN 比当前最先进的单细胞 GRN 推断方法更准确地推断出 GRN,并且提供了经过良好校准的不确定性估计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9abe/11003171/3d06aa1804fb/13059_2024_3226_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验