Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), Palermo, Italy.
Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Catania, Italy.
PLoS One. 2024 Apr 9;19(4):e0301591. doi: 10.1371/journal.pone.0301591. eCollection 2024.
Multi-layer Complex networks are commonly used for modeling and analysing biological entities. This paper presents the advantage of using COMBO (Combining Multi Bio Omics) to suggest a new role of the chromosomal aberration as a cancer driver factor. Exploiting the heterogeneous multi-layer networks, COMBO integrates gene expression and DNA-methylation data in order to identify complex bilateral relationships between transcriptome and epigenome. We evaluated the multi-layer networks generated by COMBO on different TCGA cancer datasets (COAD, BLCA, BRCA, CESC, STAD) focusing on the effect of a specific chromosomal numerical aberration, broad gain in chromosome 20, on different cancer histotypes. In addition, the effect of chromosome 8q amplification was tested in the same TCGA cancer dataset. The results demonstrate the ability of COMBO to identify the chromosome 20 amplification cancer driver force in the different TCGA Pan Cancer project datasets.
多层复杂网络常用于生物实体的建模和分析。本文介绍了使用 COMBO(组合多组学生物学数据)的优势,以提出染色体异常作为癌症驱动因子的新作用。利用异构多层网络,COMBO 整合了基因表达和 DNA 甲基化数据,以识别转录组和表观基因组之间复杂的双边关系。我们评估了 COMBO 在不同 TCGA 癌症数据集(COAD、BLCA、BRCA、CESC、STAD)上生成的多层网络,重点关注特定染色体数量异常(20 号染色体广泛增益)对不同癌症组织类型的影响。此外,还在相同的 TCGA 癌症数据集中测试了 8q 染色体扩增的影响。结果表明,COMBO 能够识别不同 TCGA 泛癌项目数据集中 20 号染色体扩增的癌症驱动因素。