Department of Cardiovascular Diseases, Mayo Clinic, Scottsdale, AZ.
Ecole Nationale des Sports de Montagne, Chamonix, FRANCE.
Med Sci Sports Exerc. 2024 Sep 1;56(9):1759-1769. doi: 10.1249/MSS.0000000000003448. Epub 2024 Apr 8.
Endurance exercise at altitude can increase cardiac output and pulmonary vascular pressure to levels that may exceed the stress tolerability of the alveolar-capillary unit. This study examined the effect of ultramarathon trail racing at different altitudes (ranging from <1000 m to between 1500 and 2700 m) on alveolar-capillary recruitment and lung diffusion.
Cardiac and lung function were examined before and after an ultramarathon in 67 runners (age: 41 ± 9 yr, body mass index: 23 ± 2 kg·m -2 , 10 females), and following 12-24 h of recovery in a subset ( n = 27). Cardiac biomarkers (cTnI and BNP) were assessed from whole blood, whereas lung fluid accumulation (comet tails), stroke volume (SV), and cardiac output ( Q ) were quantified via echocardiography. Lung diffusing capacity for carbon monoxide (DLco) and its components, alveolar membrane conductance (Dm) and capillary blood volume (Vc), were determined via a single-breath method at rest and during three stages of submaximal semirecumbent cycling (20, 30, and 40 W).
Average race time was 25 ± 12 h. From pre- to post-race, there was an increase in cardiac biomarkers (cTnI: 0.04 ± 0.02 vs 0.13 ± 0.03 ng·mL -1 , BNP: 20 ± 2 vs 112 ± 21 pg·mL -1 ; P < 0.01) and lung comet tails (2 ± 1 vs 7 ± 6, P < 0.01), a decrease in resting and exercise SV (76 ± 2 vs 69 ± 2 mL, 40 W: 93 ± 2 vs 88 ± 2 mL; P < 0.01), and an elevation in Q at rest (4.1 ± 0.1 vs 4.6 ± 0.2 L·min -1 , P < 0.01; 40 W: 7.3 ± 0.2 vs 7.4 ± 0.3 L·min -1 , P = 0.899). Resting DLco and Vc decreased after the race ( P < 0.01), whereas Dm was unchanged ( P = 0.465); however, during the three stages of exercise, DLco, Vc, and Dm were all reduced from pre- to post-race (40 W: 36.3 ± 0.9 vs 33.0 ± 0.8 mL·min -1 ·mm Hg -1 , 83 ± 3 vs 73 ± 2 mL, 186 ± 6 vs 170 ± 7 mL·min -1 ·mm Hg -1 , respectively; P < 0.01). When corrected for alveolar volume and Q , DLco decreased from pre- to post-race ( P < 0.01), and changes in DLco were similar for all ultramarathon events ( P > 0.05).
Competing in an ultramarathon leads to a transient increase in cardiac injury biomarkers, mild lung-fluid accumulation, and impairments in lung diffusion. Reductions in DLco are predominantly caused by a reduced Vc and possible pulmonary capillary de-recruitment at rest. However, impairments in alveolar-capillary recruitment and Dm both contribute to a fall in exertional DLco following an ultramarathon. Perturbations in lung diffusion were evident across a range of event distances and varying environmental exposures.
在高海拔地区进行耐力运动可增加心输出量和肺血管压力,使其超过肺泡毛细血管单位的应激耐受能力。本研究探讨了在不同海拔高度(从<1000 米到 1500 至 2700 米之间)进行超长距离越野赛跑对肺泡毛细血管募集和肺扩散的影响。
在 67 名跑步者(年龄:41 ± 9 岁,体重指数:23 ± 2kg·m -2 ,10 名女性)进行超长距离越野赛跑前后检查了心和肺功能,并在亚组(n = 27)中在恢复后 12-24 小时进行了检查。通过全血评估心脏生物标志物(cTnI 和 BNP),通过超声心动图量化肺液积累(彗星尾)、每搏量(SV)和心输出量(Q)。通过单次呼吸法在休息和三个亚最大半卧位循环阶段(20、30 和 40W)下测定一氧化碳的肺扩散能力(DLco)及其组分、肺泡膜导纳(Dm)和毛细血管血容量(Vc)。
平均比赛时间为 25 ± 12 小时。从赛前到赛后,心脏生物标志物(cTnI:0.04 ± 0.02 对 0.13 ± 0.03ng·mL -1 ,BNP:20 ± 2 对 112 ± 21pg·mL -1 ;P < 0.01)和肺彗星尾(2 ± 1 对 7 ± 6,P < 0.01)增加,SV 减少(76 ± 2 对 69 ± 2mL,40W:93 ± 2 对 88 ± 2mL;P < 0.01),休息时 Q 增加(4.1 ± 0.1 对 4.6 ± 0.2L·min -1 ,P < 0.01;40W:7.3 ± 0.2 对 7.4 ± 0.3L·min -1 ,P = 0.899)。赛后休息时 DLco 和 Vc 降低(P < 0.01),而 Dm 不变(P = 0.465);然而,在三个亚最大循环阶段,DLco、Vc 和 Dm 都从赛前到赛后降低(40W:36.3 ± 0.9 对 33.0 ± 0.8mL·min -1 ·mm Hg -1 ,83 ± 3 对 73 ± 2mL,186 ± 6 对 170 ± 7mL·min -1 ·mm Hg -1 ,P < 0.01)。当用肺泡体积和 Q 校正时,DLco 从赛前到赛后降低(P < 0.01),并且所有超长距离越野赛跑事件的 DLco 变化相似(P > 0.05)。
参加超长距离越野赛跑会导致心脏损伤生物标志物短暂增加、轻度肺液积累和肺扩散受损。DLco 的减少主要是由于 Vc 减少和休息时可能的肺毛细血管再募集减少引起的。然而,肺泡毛细血管募集和 Dm 的受损都会导致超长距离越野赛跑后运动时 DLco 下降。在一系列不同的比赛距离和不同的环境暴露下,都观察到了肺扩散功能的障碍。