Suppr超能文献

优化胰腺切除术后胰瘘预测模型:现状与展望。

Optimizing prediction models for pancreatic fistula after pancreatectomy: Current status and future perspectives.

机构信息

Department of Pancreatic Surgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China.

Surgical and Translational Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand.

出版信息

World J Gastroenterol. 2024 Mar 14;30(10):1329-1345. doi: 10.3748/wjg.v30.i10.1329.

Abstract

Postoperative pancreatic fistula (POPF) is a frequent complication after pancreatectomy, leading to increased morbidity and mortality. Optimizing prediction models for POPF has emerged as a critical focus in surgical research. Although over sixty models following pancreaticoduodenectomy, predominantly reliant on a variety of clinical, surgical, and radiological parameters, have been documented, their predictive accuracy remains suboptimal in external validation and across diverse populations. As models after distal pancreatectomy continue to be progressively reported, their external validation is eagerly anticipated. Conversely, POPF prediction after central pancreatectomy is in its nascent stage, warranting urgent need for further development and validation. The potential of machine learning and big data analytics offers promising prospects for enhancing the accuracy of prediction models by incorporating an extensive array of variables and optimizing algorithm performance. Moreover, there is potential for the development of personalized prediction models based on patient- or pancreas-specific factors and postoperative serum or drain fluid biomarkers to improve accuracy in identifying individuals at risk of POPF. In the future, prospective multicenter studies and the integration of novel imaging technologies, such as artificial intelligence-based radiomics, may further refine predictive models. Addressing these issues is anticipated to revolutionize risk stratification, clinical decision-making, and postoperative management in patients undergoing pancreatectomy.

摘要

术后胰腺瘘(POPF)是胰腺切除术后常见的并发症,导致发病率和死亡率增加。优化 POPF 的预测模型已成为外科研究的一个关键焦点。尽管已经记录了 60 多个胰腺十二指肠切除术后的模型,主要依赖于各种临床、手术和影像学参数,但它们在外部验证和不同人群中的预测准确性仍然不理想。随着远端胰腺切除术模型的不断报告,人们急切期待着对其进行外部验证。相反,中央胰腺切除术的 POPF 预测仍处于起步阶段,迫切需要进一步开发和验证。机器学习和大数据分析的潜力为通过纳入广泛的变量和优化算法性能来提高预测模型的准确性提供了有希望的前景。此外,基于患者或胰腺特异性因素以及术后血清或引流液生物标志物开发个性化预测模型有潜力提高识别 POPF 风险个体的准确性。未来,前瞻性多中心研究和新型成像技术(如基于人工智能的放射组学)的整合可能会进一步完善预测模型。解决这些问题有望彻底改变接受胰腺切除术的患者的风险分层、临床决策和术后管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1034/11000089/e410b83b4e7e/WJG-30-1329-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验