Bülow Roman David, Lan Yu-Chia, Amann Kerstin, Boor Peter
Institut für Pathologie, Sektion Nephropathologie, Universitätsklinikum RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Deutschland.
Abteilung Nephropathologie, Institut für Pathologie, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Deutschland.
Pathologie (Heidelb). 2024 Jul;45(4):277-283. doi: 10.1007/s00292-024-01324-7. Epub 2024 Apr 10.
Artificial intelligence (AI) systems have showed promising results in digital pathology, including digital nephropathology and specifically also kidney transplant pathology.
Summarize the current state of research and limitations in the field of AI in kidney transplant pathology diagnostics and provide a future outlook.
Literature search in PubMed and Web of Science using the search terms "deep learning", "transplant", and "kidney". Based on these results and studies cited in the identified literature, a selection was made of studies that have a histopathological focus and use AI to improve kidney transplant diagnostics.
Many studies have already made important contributions, particularly to the automation of the quantification of some histopathological lesions in nephropathology. This likely can be extended to automatically quantify all relevant lesions for a kidney transplant, such as Banff lesions. Important limitations and challenges exist in the collection of representative data sets and the updates of Banff classification, making large-scale studies challenging. The already positive study results make future AI support in kidney transplant pathology appear likely.
人工智能(AI)系统在数字病理学领域已显示出有前景的结果,包括数字肾病理学,特别是肾移植病理学。
总结人工智能在肾移植病理诊断领域的研究现状和局限性,并展望未来。
在PubMed和Web of Science中使用搜索词“深度学习”“移植”和“肾脏”进行文献检索。基于这些结果以及所识别文献中引用的研究,挑选出以组织病理学为重点并使用人工智能来改善肾移植诊断的研究。
许多研究已经做出了重要贡献,特别是在肾病理学中一些组织病理学病变定量的自动化方面。这很可能可以扩展到自动量化肾移植的所有相关病变,如班夫病变。在代表性数据集的收集和班夫分类的更新方面存在重要的局限性和挑战,使得大规模研究具有挑战性。已有的积极研究结果使得未来人工智能在肾移植病理学中提供支持成为可能。