Department of Microbiology, Cornell University, Ithaca, New York, USA; email:
Annu Rev Biochem. 2024 Aug;93(1):139-161. doi: 10.1146/annurev-biochem-030122-041908. Epub 2024 Jul 2.
CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated nuclease) defense systems have been naturally coopted for guide RNA-directed transposition on multiple occasions. In all cases, cooption occurred with diverse elements related to the bacterial transposon Tn7. Tn7 tightly controls transposition; the transposase is activated only when special targets are recognized by dedicated target-site selection proteins. Tn7 and the Tn7-like elements that coopted CRISPR-Cas systems evolved complementary targeting pathways: one that recognizes a highly conserved site in the chromosome and a second pathway that targets mobile plasmids capable of cell-to-cell transfer. Tn7 and Tn7-like elements deliver a single integration into the site they recognize and also control the orientation of the integration event, providing future potential for use as programmable gene-integration tools. Early work has shown that guide RNA-directed transposition systems can be adapted to diverse hosts, even within microbial communities, suggesting great potential for engineering these systems as powerful gene-editing tools.
CRISPR-Cas(成簇规律间隔短回文重复序列 - CRISPR 相关核酸酶)防御系统已多次被自然地用于指导 RNA 引导的转座。在所有情况下,转座子 Tn7 相关的不同元件都参与了这种共同转座。Tn7 严格控制转座;只有当特定的靶标被专门的靶标选择蛋白识别时,转座酶才会被激活。Tn7 和共同转座 CRISPR-Cas 系统的 Tn7 样元件进化出互补的靶向途径:一种识别染色体中高度保守的位点,另一种靶向能够在细胞间转移的移动质粒。Tn7 和 Tn7 样元件将单个整合到它们识别的位点,并控制整合事件的方向,为未来用作可编程基因整合工具提供了潜在可能性。早期的工作表明,指导 RNA 引导的转座系统可以适应不同的宿主,甚至在微生物群落中,这表明这些系统作为强大的基因编辑工具具有很大的潜力。