State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, China.
State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, China.
Int J Biol Macromol. 2024 May;267(Pt 2):131463. doi: 10.1016/j.ijbiomac.2024.131463. Epub 2024 Apr 8.
The rational and effective combination of different electrochemical substances to prepare high-performance supercapacitor electrodes has been widely studied by researchers. Currently, most work focuses on polymerizing conductive polymers onto the surface of nanocellulose and carbon materials, and then preparing them into supercapacitor electrodes. This method is effective, but the process is cumbersome. Therefore, we propose a simpler and more effective method. A hydrogel was prepared by using TEMPO oxidized cellulose nanofibers (TOCNF)/multi walled carbon nanotubes (MWCNT), and then immersed in aniline and FeCI solutions for 24 h to obtain a hydrogel electrode. At a current density of 0.5 mA cm, it exhibits an area specific capacitance of 1028 mF cm, with a maximum strain of 58 % and a compressive stress of 150 KPa. The assembled symmetrical supercapacitor exhibits a high specific capacitance of 303 mF cm at a current density of 0.5 mA cm. The research results indicate that the proposed method is a new feasible approach for developing supercapacitors.
研究人员广泛研究了将不同电化学物质合理有效地组合起来制备高性能超级电容器电极。目前,大多数工作集中在将导电聚合物聚合到纳米纤维素和碳材料的表面上,然后将它们制备成超级电容器电极。这种方法是有效的,但过程繁琐。因此,我们提出了一种更简单有效的方法。通过使用 TEMPO 氧化纤维素纳米纤维(TOCNF)/多壁碳纳米管(MWCNT)制备水凝胶,然后将其浸入苯胺和 FeCI 溶液中 24 小时,得到水凝胶电极。在 0.5 mA cm 的电流密度下,它表现出 1028 mF cm 的比面积电容,最大应变为 58%,压缩应力为 150 KPa。组装的对称超级电容器在 0.5 mA cm 的电流密度下表现出 303 mF cm 的高比面积电容。研究结果表明,所提出的方法为开发超级电容器提供了一种新的可行方法。