Suppr超能文献

使用壳聚糖-氧化镁纳米片进行电化学微塑料检测。

Electrochemically microplastic detection using chitosan-magnesium oxide nanosheet.

机构信息

Nano-Bio Laboratory, Special Center for Nanoscience, Jawaharlal Nehru University, New Delhi, India.

NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, 33805, FL, USA; School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun, Uttarakhand, India.

出版信息

Environ Res. 2024 Jul 1;252(Pt 3):118894. doi: 10.1016/j.envres.2024.118894. Epub 2024 Apr 8.

Abstract

Microplastics, an invisible threat, are emerging as serious pollutants that continuously affect health by interrupting/contaminating the human cycle, mainly involving food, water, and air. Such serious scenarios raised the demand for developing efficient sensing systems to detect them at an early stage efficiently and selectively. In this direction, the proposed research reports an electrochemical hexamethylenetetramine (HMT) sensing utilizing a sensing platform fabricated using chitosan-magnesium oxide nanosheets (CHIT-MgO NS) nanocomposite. HMT is considered as a hazardous microplastic, which is used as an additive in plastic manufacturers and has been selected as a target analyte. To fabricate sensing electrodes, a facile co-precipitation technique was employed to synthesize MgO NS, which was further mixed with 1% CHIT solution to form a CHIT_MgO NS composite. Such prepared nanocomposite solution was then drop casted to an indium tin oxide (ITO) to fabricate CHIT_MgO NS/ITO sensing electrode to detect HMT electrochemically using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. To determine the limit of detection (LOD) and sensitivity, DPV was performed. The resulting calibrated curve for HMT, ranging from 0.5 μM to 4.0 μM, exhibited a sensitivity of 12.908 μA (μM) cm with a detection limit of 0.03 μM and a limit of quantitation (LOQ) of 0.10 μM. Further, the CHIT_MgO NS/ITO modified electrode was applied to analyze HMT in various real samples, including river water, drain water, packaged water, and tertiary processed food. The results demonstrated the method's high sensitivity and suggested its potential applications in the field of microplastic surveillance, with a focus on health management.

摘要

微塑料是一种无形的威胁,作为严重的污染物不断出现,通过干扰/污染人体循环,主要涉及食物、水和空气,对健康产生影响。如此严重的情况促使人们需要开发有效的传感系统,以便能够高效且选择性地在早期检测到它们。在这一方向上,提出的研究报告了一种基于电化学六亚甲基四胺(HMT)的传感,该传感利用壳聚糖-氧化镁纳米片(CHIT-MgO NS)纳米复合材料构建的传感平台来实现。HMT 被认为是一种危险的微塑料,它被用作塑料制造商的添加剂,并被选为目标分析物。为了制造传感电极,采用简便的共沉淀技术合成了 MgO NS,然后将其与 1% CHIT 溶液混合,形成 CHIT-MgO NS 复合材料。然后将这种制备的纳米复合材料溶液滴铸到氧化铟锡(ITO)上,以使用循环伏安法(CV)和差分脉冲伏安法(DPV)技术电化学检测 HMT。为了确定检测限(LOD)和灵敏度,进行了 DPV 测试。对于 HMT 的结果校准曲线,范围从 0.5 μM 到 4.0 μM,表现出 12.908 μA(μM)cm 的灵敏度,检测限为 0.03 μM,定量限(LOQ)为 0.10 μM。此外,将 CHIT-MgO NS/ITO 修饰电极应用于各种实际样品中的 HMT 分析,包括河水、污水、包装水和三级加工食品。结果表明该方法具有高灵敏度,并表明其在微塑料监测领域的潜在应用,特别是在健康管理方面。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验