Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany.
Charité Universitätsmedizin, Berlin, Germany.
PLoS One. 2024 Apr 11;19(4):e0302024. doi: 10.1371/journal.pone.0302024. eCollection 2024.
Cardiovascular diseases remain the leading global cause of mortality. Age is an important covariate whose effect is most easily investigated in a healthy cohort to properly distinguish the former from disease-related changes. Traditionally, most of such insights have been drawn from the analysis of electrocardiogram (ECG) feature changes in individuals as they age. However, these features, while informative, may potentially obscure underlying data relationships. In this paper we present the following contributions: (1) We employ a deep-learning model and a tree-based model to analyze ECG data from a robust dataset of healthy individuals across varying ages in both raw signals and ECG feature format. (2) We use explainable AI methods to identify the most discriminative ECG features across age groups.(3) Our analysis with tree-based classifiers reveals age-related declines in inferred breathing rates and identifies notably high SDANN values as indicative of elderly individuals, distinguishing them from younger adults. (4) Furthermore, the deep-learning model underscores the pivotal role of the P-wave in age predictions across all age groups, suggesting potential changes in the distribution of different P-wave types with age. These findings shed new light on age-related ECG changes, offering insights that transcend traditional feature-based approaches.
心血管疾病仍然是全球主要的死亡原因。年龄是一个重要的协变量,其影响在健康队列中最容易被研究,以便正确区分前者和与疾病相关的变化。传统上,大多数这样的见解都是从个体心电图 (ECG) 特征随年龄变化的分析中得出的。然而,这些特征虽然提供了信息,但可能会掩盖潜在的数据关系。在本文中,我们提出了以下贡献:(1) 我们采用深度学习模型和基于树的模型,在原始信号和 ECG 特征格式中,对来自健康个体的稳健数据集的 ECG 数据进行分析,这些个体的年龄各不相同。(2) 我们使用可解释的人工智能方法来识别跨年龄组最具判别力的 ECG 特征。(3) 我们使用基于树的分类器的分析揭示了与年龄相关的推断呼吸率下降,并确定了显著较高的 SDANN 值表示老年人,将他们与年轻人区分开来。(4) 此外,深度学习模型强调了 P 波在所有年龄组的年龄预测中的关键作用,表明不同 P 波类型的分布随年龄可能发生变化。这些发现为与年龄相关的 ECG 变化提供了新的见解,超越了传统的基于特征的方法。