Suppr超能文献

LI-RADS 版本 2018 经动脉化疗栓塞治疗肝细胞癌患者的细胞外对比增强 MRI 治疗反应算法:诊断性能和辅助特征的附加价值。

LI-RADS version 2018 treatment response algorithm on extracellular contrast-enhanced MRI in patients treated with transarterial chemoembolization for hepatocellular carcinoma: diagnostic performance and the added value of ancillary features.

机构信息

Department of Radiology, Tianjin Third Central Hospital, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, No. 83 Jintang Road, Hedong District, Tianjin, 300170, China.

Department of Radiology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032, China.

出版信息

Abdom Radiol (NY). 2024 Sep;49(9):3045-3055. doi: 10.1007/s00261-024-04275-y. Epub 2024 Apr 11.

Abstract

BACKGROUND

The Liver Imaging Reporting and Data System (LI-RADS) Treatment Response Algorithm (TRA) (LI-RADS TRA) is used for assessing response of HCC to locoregional therapy (LRT), however, the value of ancillary features (AFs) for TACE-treated HCCs has not been extensively investigated on extracellular agent MRI (ECA-MRI).

PURPOSE

To evaluate the diagnostic performance of LI-RADS v2018 TRA on ECA-MRI for HCC treated with transarterial chemoembolization (TACE) and the value of ancillary features.

METHODS

This retrospective study included patients who underwent TACE for HCC and then followed by hepatic surgery between January 2019 and June 2023 with both pre- and post-TACE contrast-enhanced MRI available. Two radiologists independently evaluated the post-treated lesions on MRI using LI-RADS treatment response (TR) (LR-TR) algorithm and modified LR-TR (mLR-TR) algorithm in which ancillary features (restricted diffusion and intermediate T2-weighted hyperintensity) were added, respectively. Lesions were categorized as complete pathologic necrosis (100%, CPN) and non-complete pathologic necrosis (< 100%, non-CPN) on the basis of surgical pathology. The diagnostic performance in predicting viable and non-viable tumors based on LR-TR and mLR-TR algorithms was compared using the McNemar test. Interreader agreement was calculated by using Cohen's weighted and unweighted κ.

RESULTS

A total of 61 patients [mean age 59 years ± 10 (standard deviation); 47 men] with 79 lesions (57 pathologically viable) were included. For non-CPN prediction, the sensitivity, specificity of LR-TR viable and mLR-TR viable category were 75% (43 of 57), 82% (18 of 22) and 88% (50 of 57), 77% (17 of 22), respectively, the sensitivity of mLR-TR was significantly higher than that of LR-TR (P = 0.016) without difference in specificity (P = 1.000). Interreader agreement for LR-TR and mLR-TR category was moderate (k = 0.50, 95% confidence interval 0.33, 0.67, k = 0.42, 95% confidence interval 0.20, 0.63). The sensitivity of both LR-TR and mLR-TR algorithms in predicting viable tumors between conventional TACE (cTACE) and drug-eluting beads TACE (DEB-TACE) did not have significant difference (cTACE: 76%, 89% vs. DEB-TACE: 73%, 82%).

CONCLUSIONS

On ECA-MRI, applying ancillary features to LI-RADS v2018 TRA can improve the sensitivity in predicting pathologic tumor viability in patients treated with TACE for hepatocellular carcinoma with no significant difference in specificity.

摘要

背景

肝脏成像报告和数据系统(LI-RADS)治疗反应算法(LI-RADS TRA)用于评估 HCC 对局部区域治疗(LRT)的反应,然而,辅助特征(AFs)在细胞外造影剂 MRI(ECA-MRI)上对 TACE 治疗的 HCC 的价值尚未得到广泛研究。

目的

评估 LI-RADS v2018 TRA 在 ECA-MRI 上对 TACE 治疗 HCC 的诊断性能以及辅助特征的价值。

方法

本回顾性研究纳入了 2019 年 1 月至 2023 年 6 月期间接受 HCC 肝动脉化疗栓塞术(TACE)并随后进行肝切除术的患者,这些患者均有 TACE 前后的对比增强 MRI 资料。两位放射科医生分别使用 LI-RADS 治疗反应(TR)(LR-TR)算法和添加辅助特征(弥散受限和中等 T2 加权高信号)的改良 LR-TR(mLR-TR)算法,独立评估治疗后病变的 MRI。根据手术病理结果,将病变分为完全病理坏死(100%,CPN)和非完全病理坏死(<100%,非 CPN)。比较基于 LR-TR 和 mLR-TR 算法预测存活和非存活肿瘤的诊断性能,采用 McNemar 检验。使用 Cohen 的加权和非加权κ计算读者间的一致性。

结果

共纳入 61 例患者[平均年龄 59±10(标准差);47 例男性],共 79 个病灶(57 个病理存活)。对于非 CPN 预测,LR-TR 存活和 mLR-TR 存活类别的灵敏度、特异性分别为 75%(57 个中的 43 个)、82%(22 个中的 18 个)和 88%(57 个中的 50 个)、77%(22 个中的 17 个),mLR-TR 的灵敏度明显高于 LR-TR(P=0.016),特异性无差异(P=1.000)。LR-TR 和 mLR-TR 类别的读者间一致性为中度(k=0.50,95%置信区间 0.33,0.67,k=0.42,95%置信区间 0.20,0.63)。LR-TR 和 mLR-TR 算法在预测 cTACE 和药物洗脱微球 TACE(DEB-TACE)治疗 HCC 存活肿瘤的灵敏度方面无显著差异(cTACE:76%,89% vs. DEB-TACE:73%,82%)。

结论

在 ECA-MRI 上,应用辅助特征对 LI-RADS v2018 TRA 可以提高预测 TACE 治疗 HCC 患者病理肿瘤活力的灵敏度,而特异性无显著差异。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验