Karmakar Anirban, Santos Andreia A C D, Pagliaricci Noemi, Pires João, Batista Mary, Alegria Elisabete C B A, Martin-Calvo Ana, Gutiérrez-Sevillano Juan José, Calero Sofia, Guedes da Silva M Fátima C, Pettinari Riccardo, Pombeiro Armando J L
Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.
Departamento de Engenharia Química, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro, 1, 1959-007 Lisbon, Portugal.
ACS Appl Mater Interfaces. 2024 Apr 11. doi: 10.1021/acsami.4c02560.
In the present work, three novel halogen-appended cadmium(II) metal-organic frameworks [Cd(L1)(4,4'-Bipy)]·4(DMF) (), [Cd(L2)(4,4'-Bipy)]·3(DMF) (), and [Cd(L3)(4,4'-Bipy)]·2(DMF) () [where L1 = 5-{(4-bromobenzyl)amino}isophthalate; L2 = 5-{(4-chlorobenzyl)amino}isophthalate; L3 = 5-{(4-fluorobenzyl)amino}isophthalate; 4,4'-Bipy = 4,4'-bipyridine; and DMF = ,'-dimethylformamide] have been synthesized under solvothermal conditions and characterized by various analytical techniques. The single-crystal X-ray diffraction analysis demonstrated that all the MOFs feature a similar type of three-dimensional structure having a binuclear [Cd(COO)(N)] secondary building block unit. Moreover, MOFs and contain one-dimensional channels along the -axis, whereas MOF possesses a 1D channel along the -axis. In these MOFs, the pores are decorated with multifunctional groups, i.e., halogen and amine. The gas adsorption analysis of these MOFs demonstrate that they display high uptake of CO (up to 5.34 mmol/g) over N and CH. The isosteric heat of adsorption () value for CO at zero loadings is in the range of 18-26 kJ mol. In order to understand the mechanism behind the better adsorption of CO by our MOFs, we have also performed configurational bias Monte Carlo simulation studies, which confirm that the interaction between our MOFs and CO is stronger compared to those with N and CH. Various noncovalent interactions, e.g., halogen (X)···O, Cd···O, and O···O, between CO and the halogen atom, the Cd(II) metal center, and the carboxylate group from the MOFs are observed, respectively, which may be a reason for the higher carbon dioxide adsorption. Ideal adsorbed solution theory (IAST) calculations of MOF demonstrate that the obtained selectivity values for CO/CH (50:50) and CO/N (15:85) are ca. 28 and 193 at 273 K, respectively. However, upon increasing the temperature to 298 K, the selectivity value ( = 34) decreases significantly for the CO/N mixture. We have also calculated the breakthrough analysis curves for all the MOFs using mixtures of CO/CH (50:50) and CO/N (50:50 and 15:85) at different entering gas velocities and observed larger retention times for CO in comparison with other gases, which also signifies the stronger interaction between our MOFs and CO. Moreover, due to the presence of Lewis acidic metal centers, these MOFs act as heterogeneous catalysts for the CO fixation reactions with different epoxides in the presence of tetrabutyl ammonium bromide (TBAB), for conversion into industrially valuable cyclic carbonates. These MOFs exhibit a high conversion (96-99%) of epichlorohydrin (ECH) to the corresponding cyclic carbonate 4-(chloromethyl)-1,3-dioxolan-2-one after 12 h of reaction time at 1 bar of CO pressure, at 65 °C. The MOFs can be reused up to four cycles without compromising their structural integrity as well as without losing their activity significantly.
在本工作中,通过溶剂热法合成了三种新型的含卤素镉(II)金属有机框架化合物[Cd(L1)(4,4'-联吡啶)]·4(DMF) ()、[Cd(L2)(4,4'-联吡啶)]·3(DMF) ()和[Cd(L3)(4,4'-联吡啶)]·2(DMF) ()[其中L1 = 5-{(4-溴苄基)氨基}间苯二甲酸酯;L2 = 5-{(4-氯苄基)氨基}间苯二甲酸酯;L3 = 5-{(4-氟苄基)氨基}间苯二甲酸酯;4,4'-联吡啶 = 4,4'-联吡啶;DMF = N,N'-二甲基甲酰胺],并通过各种分析技术对其进行了表征。单晶X射线衍射分析表明,所有的金属有机框架化合物均具有类似类型的三维结构,含有双核[Cd(COO)(N)]二级结构单元。此外,金属有机框架化合物 和 沿 轴具有一维通道,而金属有机框架化合物 沿 轴具有一维通道。在这些金属有机框架化合物中,孔道被多功能基团修饰,即卤素和胺基。对这些金属有机框架化合物的气体吸附分析表明,它们对CO的吸附量高于N和CH(高达5.34 mmol/g)。零负载下CO的等量吸附热()值在18 - 26 kJ/mol范围内。为了理解我们的金属有机框架化合物对CO具有更好吸附性能背后的机制,我们还进行了构型偏置蒙特卡罗模拟研究,结果证实我们的金属有机框架化合物与CO之间的相互作用比与N和CH之间的相互作用更强。分别观察到CO与金属有机框架化合物中的卤素原子、Cd(II)金属中心以及羧酸根基团之间存在各种非共价相互作用,如卤素(X)···O、Cd···O和O···O,这可能是二氧化碳吸附量较高的原因。金属有机框架化合物 的理想吸附溶液理论(IAST)计算表明,在273 K时,对于CO/CH(50:50)和CO/N(15:85),获得的选择性值分别约为28和193。然而,将温度升高到298 K时,CO/N混合物的选择性值( = 34)显著降低。我们还使用CO/CH(50:50)和CO/N(50:50和15:85)的混合物在不同的进气速度下计算了所有金属有机框架化合物的穿透分析曲线,观察到与其他气体相比,CO的保留时间更长,这也表明我们的金属有机框架化合物与CO之间的相互作用更强。此外,由于存在路易斯酸性金属中心,在四丁基溴化铵(TBAB)存在下,这些金属有机框架化合物可作为多相催化剂用于与不同环氧化物的CO固定反应,转化为具有工业价值的环状碳酸酯。在1 bar CO压力、65 °C下反应12 h后,这些金属有机框架化合物将环氧氯丙烷(ECH)转化为相应的环状碳酸酯4-(氯甲基)-1,3-二氧戊环-2-酮的转化率高达96 - 99%。这些金属有机框架化合物可以重复使用多达四个循环,而不会损害其结构完整性,也不会显著丧失其活性。