Suppr超能文献

具有记忆多孔微结构恢复功能的温度响应性聚己内酯-聚乳酸纳米纤维组织工程支架

Temperature-responsive PCL-PLLA nanofibrous tissue engineering scaffolds with memorized porous microstructure recovery.

作者信息

Woodbury Seth M, Swanson W Benton, Douglas Lindsey, Niemann David, Mishina Yuji

机构信息

Department of Biologic and Materials Science, Division of Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States.

Department of Chemistry, College of Literature, Science and the Arts, University of Michigan, Ann Arbor, MI, United States.

出版信息

Front Dent Med. 2023;4. doi: 10.3389/fdmed.2023.1240397. Epub 2023 Sep 26.

Abstract

Biomaterial scaffolds in tissue engineering facilitate tissue regeneration and integration with the host. Poor healing outcomes arise from lack of cell and tissue infiltration, and ill-fitting interfaces between matrices or grafts, resulting in fibrous tissue formation, inflammation, and resorption. Existing tissue engineering scaffolds struggle to recover from deformation to fit irregularly shaped defects encountered in clinical settings without compromising their mechanical properties and favorable internal architecture. This study introduces a synthetic biomaterial scaffold composed of high molecular weight poly (L-lactic acid) (PLLA) and an interpenetrating network of poly (ε-caprolactone) (PCL), in a composition aiming to address the need for conformal fitting synthetic matrices which retain and recover their advantageous morphologies. The scaffold, known as thermosensitive memorized microstructure (TS-MMS), forms nanofibrous materials with memorized microstructures capable of recovery after deformation, including macropores and nanofibers. TS-MMS nanofibers, with 50-500 nm diameters, are formed via thermally induced phase separation (TIPS) of PLLA after polymerization of PCL-diacrylate. A critical partial-melting temperature of TS-MMS at 52°C enables bulk deformation above this temperature, while retaining the nanofibrous and macroporous structures upon cooling to 37°C. Incorporation of drug-loaded poly (lactide-co-glycolide) (PLGA) nanoparticles directly into TS-MMS nanofibers during fabrication allows sustained release of a model drug for up to 40 days. Subcutaneous implantation using LysM-Cre;td-Tomato; Col1eGFP mice demonstrates successful cellularization and integration of deformed/recovered TS-MMS materials, surpassing the limitations of deformed PLLA scaffolds, to facilitate cell and vasculature infiltration requisite for successful bone regeneration. Additionally we demonstrated a method for embedding controlled release vehicles directly into the scaffold nanofibers; controlled release of simvastatin enhances vascularization and tissue maturation. TS-MMS scaffolds offer promising improvements in clinical handling and performance compared to existing biomaterial scaffolds.

摘要

组织工程中的生物材料支架有助于组织再生以及与宿主的整合。愈合效果不佳是由于缺乏细胞和组织浸润,以及基质或移植物之间的界面贴合不良,从而导致纤维组织形成、炎症和吸收。现有的组织工程支架难以从变形中恢复以适应临床环境中遇到的不规则形状的缺损,同时又不损害其机械性能和良好的内部结构。本研究引入了一种由高分子量聚(L-乳酸)(PLLA)和聚(ε-己内酯)(PCL)互穿网络组成的合成生物材料支架,其组成旨在满足对能够贴合且保留并恢复其有利形态的合成基质的需求。该支架被称为热敏记忆微结构(TS-MMS),形成具有记忆微结构的纳米纤维材料,能够在变形后恢复,包括大孔和纳米纤维。TS-MMS纳米纤维的直径为50-500nm,是在PCL-二丙烯酸酯聚合后通过PLLA的热致相分离(TIPS)形成的。TS-MMS在52°C的临界部分熔化温度使得在该温度以上能够进行整体变形,同时在冷却至37°C时保留纳米纤维和大孔结构。在制造过程中将载药聚(丙交酯-共-乙交酯)(PLGA)纳米颗粒直接掺入TS-MMS纳米纤维中可使模型药物持续释放长达40天。使用LysM-Cre;td-Tomato; Col1eGFP小鼠进行皮下植入证明了变形/恢复的TS-MMS材料成功实现细胞化和整合,超越了变形PLLA支架的局限性,以促进成功骨再生所需的细胞和血管浸润。此外,我们展示了一种将控释载体直接嵌入支架纳米纤维的方法;辛伐他汀控释可增强血管生成和组织成熟。与现有的生物材料支架相比,TS-MMS支架在临床操作和性能方面有显著改善。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b73/11797889/7adc74b6e3b7/fdmed-04-1240397-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验