Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA.
Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA.
Epilepsia. 2024 Jun;65(6):1730-1736. doi: 10.1111/epi.17984. Epub 2024 Apr 12.
Recently, a deep learning artificial intelligence (AI) model forecasted seizure risk using retrospective seizure diaries with higher accuracy than random forecasts. The present study sought to prospectively evaluate the same algorithm.
We recruited a prospective cohort of 46 people with epilepsy; 25 completed sufficient data entry for analysis (median = 5 months). We used the same AI method as in our prior study. Group-level and individual-level Brier Skill Scores (BSSs) compared random forecasts and simple moving average forecasts to the AI.
The AI had an area under the receiver operating characteristic curve of .82. At the group level, the AI outperformed random forecasting (BSS = .53). At the individual level, AI outperformed random in 28% of cases. At the group and individual level, the moving average outperformed the AI. If pre-enrollment (nonverified) diaries (with presumed underreporting) were included, the AI significantly outperformed both comparators. Surveys showed most did not mind poor-quality LOW-RISK or HIGH-RISK forecasts, yet 91% wanted access to these forecasts.
The previously developed AI forecasting tool did not outperform a very simple moving average forecasting in this prospective cohort, suggesting that the AI model should be replaced.
最近,一种深度学习人工智能(AI)模型使用回顾性癫痫发作日记预测癫痫发作风险的准确性高于随机预测。本研究旨在前瞻性评估相同的算法。
我们招募了一个前瞻性癫痫队列,共 46 人;其中 25 人完成了足够的数据分析(中位数=5 个月)。我们使用了与之前研究相同的 AI 方法。使用群体水平和个体水平的 Brier 技能评分(BSS)将随机预测和简单移动平均预测与 AI 进行比较。
AI 的受试者工作特征曲线下面积为 0.82。在群体水平上,AI 优于随机预测(BSS=0.53)。在个体水平上,AI 在 28%的情况下优于随机预测。在群体和个体水平上,移动平均预测均优于 AI。如果包括(未经证实的)预登记(假定报告不足)日记,则 AI 明显优于所有比较者。调查显示,大多数人不介意低风险或高风险预测质量差,但 91%的人希望获得这些预测。
在这个前瞻性队列中,之前开发的 AI 预测工具并没有优于非常简单的移动平均预测,这表明 AI 模型应该被替换。