Suppr超能文献

使用分子描述符预测化合物对铜绿假单胞菌外膜的渗透性。

Predicting permeation of compounds across the outer membrane of P. aeruginosa using molecular descriptors.

作者信息

Manrique Pedro D, Leus Inga V, López César A, Mehla Jitender, Malloci Giuliano, Gervasoni Silvia, Vargiu Attilio V, Kinthada Rama K, Herndon Liam, Hengartner Nicolas W, Walker John K, Rybenkov Valentin V, Ruggerone Paolo, Zgurskaya Helen I, Gnanakaran S

机构信息

Physics Department, George Washington University, Washington, 20052, DC, USA.

Department of Chemistry and Biochemistry, University of Oklahoma, Norman, 73019, OK, USA.

出版信息

Commun Chem. 2024 Apr 12;7(1):84. doi: 10.1038/s42004-024-01161-y.

Abstract

The ability Gram-negative pathogens have at adapting and protecting themselves against antibiotics has increasingly become a public health threat. Data-driven models identifying molecular properties that correlate with outer membrane (OM) permeation and growth inhibition while avoiding efflux could guide the discovery of novel classes of antibiotics. Here we evaluate 174 molecular descriptors in 1260 antimicrobial compounds and study their correlations with antibacterial activity in Gram-negative Pseudomonas aeruginosa. The descriptors are derived from traditional approaches quantifying the compounds' intrinsic physicochemical properties, together with, bacterium-specific from ensemble docking of compounds targeting specific MexB binding pockets, and all-atom molecular dynamics simulations in different subregions of the OM model. Using these descriptors and the measured inhibitory concentrations, we design a statistical protocol to identify predictors of OM permeation/inhibition. We find consistent rules across most of our data highlighting the role of the interaction between the compounds and the OM. An implementation of the rules uncovered in our study is shown, and it demonstrates the accuracy of our approach in a set of previously unseen compounds. Our analysis sheds new light on the key properties drug candidates need to effectively permeate/inhibit P. aeruginosa, and opens the gate to similar data-driven studies in other Gram-negative pathogens.

摘要

革兰氏阴性病原体对抗生素的适应和自我保护能力日益成为公共卫生威胁。基于数据的模型能够识别与外膜(OM)渗透和生长抑制相关的分子特性,同时避免外排,这可能会指导新型抗生素的发现。在此,我们评估了1260种抗菌化合物中的174种分子描述符,并研究了它们与革兰氏阴性铜绿假单胞菌抗菌活性的相关性。这些描述符来自传统方法,用于量化化合物的固有物理化学性质,以及针对特定MexB结合口袋的化合物整体对接的细菌特异性描述符,以及在OM模型不同子区域的全原子分子动力学模拟。利用这些描述符和测得的抑制浓度,我们设计了一种统计方案来识别OM渗透/抑制的预测因子。我们在大多数数据中发现了一致的规律,突出了化合物与OM之间相互作用的作用。展示了我们研究中发现的规则的一个应用实例,它证明了我们的方法在一组先前未见的化合物中的准确性。我们的分析为候选药物有效渗透/抑制铜绿假单胞菌所需的关键特性提供了新的见解,并为其他革兰氏阴性病原体的类似数据驱动研究打开了大门。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adb3/11015012/4757527a5d42/42004_2024_1161_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验