Suppr超能文献

利用图谱规模的外部数据从单细胞多组学数据推断基因调控网络。

Inferring gene regulatory networks from single-cell multiome data using atlas-scale external data.

作者信息

Yuan Qiuyue, Duren Zhana

机构信息

Center for Human Genetics, Department of Genetics and Biochemistry, Clemson University, Greenwood, SC, USA.

出版信息

Nat Biotechnol. 2025 Feb;43(2):247-257. doi: 10.1038/s41587-024-02182-7. Epub 2024 Apr 12.

Abstract

Existing methods for gene regulatory network (GRN) inference rely on gene expression data alone or on lower resolution bulk data. Despite the recent integration of chromatin accessibility and RNA sequencing data, learning complex mechanisms from limited independent data points still presents a daunting challenge. Here we present LINGER (Lifelong neural network for gene regulation), a machine-learning method to infer GRNs from single-cell paired gene expression and chromatin accessibility data. LINGER incorporates atlas-scale external bulk data across diverse cellular contexts and prior knowledge of transcription factor motifs as a manifold regularization. LINGER achieves a fourfold to sevenfold relative increase in accuracy over existing methods and reveals a complex regulatory landscape of genome-wide association studies, enabling enhanced interpretation of disease-associated variants and genes. Following the GRN inference from reference single-cell multiome data, LINGER enables the estimation of transcription factor activity solely from bulk or single-cell gene expression data, leveraging the abundance of available gene expression data to identify driver regulators from case-control studies.

摘要

现有的基因调控网络(GRN)推断方法仅依赖基因表达数据或较低分辨率的批量数据。尽管最近整合了染色质可及性和RNA测序数据,但从有限的独立数据点学习复杂机制仍然是一项艰巨的挑战。在此,我们提出了LINGER(用于基因调控的终身神经网络),这是一种从单细胞配对基因表达和染色质可及性数据推断GRN的机器学习方法。LINGER将跨不同细胞背景的图谱规模外部批量数据和转录因子基序的先验知识纳入作为一种流形正则化。与现有方法相比,LINGER的准确率相对提高了四倍至七倍,并揭示了全基因组关联研究的复杂调控格局,从而能够增强对疾病相关变异和基因的解释。在从参考单细胞多组学数据推断GRN之后,LINGER能够仅从批量或单细胞基因表达数据估计转录因子活性,利用大量可用的基因表达数据从病例对照研究中识别驱动调节因子。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/943b/11825371/48cb8d4359ef/41587_2024_2182_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验