Malumbres Victor, Saldana Jose, Berné Gonzalo, Modrego Julio
CIRCE Technology Center, Avenida Ranillas, 50018 Zaragoza, Spain.
Airfal International, C. Río Ésera, 5, Villanueva de Gállego, 50830 Zaragoza, Spain.
Sensors (Basel). 2024 Mar 25;24(7):2104. doi: 10.3390/s24072104.
The capacity to update firmware is a vital component in the lifecycle of Internet of Things (IoT) devices, even those with restricted hardware resources. This paper explores the best way to wirelessly (Over The Air, OTA) update low-end IoT nodes with difficult access, combining the use of unicast and broadcast communications. The devices under consideration correspond to a recent industrial IoT project that focuses on the installation of intelligent lighting systems within ATEX (potentially explosive atmospheres) zones, connected via LoRa to a gateway. As energy consumption is not limited in this use case, the main figure of merit is the total time required for updating a project. Therefore, the objective is to deliver all the fragments of the firmware to each and all the nodes in a safe way, in the least amount of time. Three different methods, combining unicast and broadcast transmissions in different ways, are explored analytically, with the aim of obtaining the expected update time. The methods are also tested via extensive simulations, modifying different parameters such as the size of the scenario, the number of bytes of each firmware chunk, the number of nodes, and the number of initial broadcast rounds. The simulations show that the update time of a project can be significant, considering the limitations posed by regulations, in terms of the percentage of airtime consumption. However, significant time reductions can be achieved by using the proper method: in some cases, when the number of nodes is high, the update time can be reduced by two orders of magnitude if the correct method is chosen. Moreover, one of the proposed methods is implemented using actual hardware. This real implementation is used to perform firmware update experiments in a lab environment. Overall, the article illustrates the advantage of broadcast approaches in this kind of technology, in which the transmission rate is constant despite the distance between the gateway and the node. However, the advantage of these broadcast methods with respect to the unicast one could be mitigated if the nodes do not run exactly the same firmware version, since the control of the broadcast update would be more difficult and the total update time would increase.
固件更新能力是物联网(IoT)设备生命周期中的一个重要组成部分,即使是那些硬件资源有限的设备。本文探讨了如何通过结合单播和广播通信,以无线方式(空中下载,OTA)对难以访问的低端物联网节点进行更新的最佳方法。所考虑的设备对应于一个近期的工业物联网项目,该项目专注于在危险环境(潜在爆炸性环境)区域内安装智能照明系统,通过LoRa连接到网关。由于在此用例中能耗不受限制,主要的评估指标是更新一个项目所需的总时间。因此,目标是以安全的方式在最短时间内将固件的所有片段传送到每个节点及所有节点。本文通过分析探索了三种以不同方式结合单播和广播传输的方法,目的是获得预期的更新时间。这些方法还通过广泛的模拟进行了测试,修改了不同参数,如场景大小、每个固件块的字节数、节点数量和初始广播轮数。模拟结果表明,考虑到法规所带来的限制,就空中时间消耗百分比而言,一个项目的更新时间可能会很长。然而,通过使用适当的方法可以显著减少时间:在某些情况下,当节点数量较多时,如果选择正确的方法,更新时间可以减少两个数量级。此外,所提出的方法之一使用实际硬件进行了实现。这种实际实现用于在实验室环境中进行固件更新实验。总体而言,本文说明了广播方法在这类技术中的优势,即在这种技术中,尽管网关与节点之间存在距离,但传输速率是恒定的。然而,如果节点运行的固件版本不完全相同,这些广播方法相对于单播方法的优势可能会被削弱,因为广播更新的控制会更加困难,总更新时间会增加。