Suppr超能文献

基于机器学习的空间转录组数据对三级淋巴结构的特征分析和鉴定。

Machine Learning-Based Characterization and Identification of Tertiary Lymphoid Structures Using Spatial Transcriptomics Data.

机构信息

Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China.

Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan.

出版信息

Int J Mol Sci. 2024 Mar 30;25(7):3887. doi: 10.3390/ijms25073887.

Abstract

Tertiary lymphoid structures (TLSs) are organized aggregates of immune cells in non-lymphoid tissues and are associated with a favorable prognosis in tumors. However, TLS markers remain inconsistent, and the utilization of machine learning techniques for this purpose is limited. To tackle this challenge, we began by identifying TLS markers through bioinformatics analysis and machine learning techniques. Subsequently, we leveraged spatial transcriptomic data from Gene Expression Omnibus (GEO) and built two support vector classifier models for TLS prediction: one without feature selection and the other using the marker genes. The comparable performances of these two models confirm the efficacy of the selected markers. The majority of the markers are immunoglobulin genes, demonstrating their importance in the identification of TLSs. Our research has identified the markers of TLSs using machine learning methods and constructed a model to predict TLS location, contributing to the detection of TLS and holding the promising potential to impact cancer treatment strategies.

摘要

三级淋巴结构 (TLSs) 是在非淋巴组织中聚集的免疫细胞,与肿瘤的良好预后相关。然而,TLS 标志物仍然不一致,并且机器学习技术在这方面的应用受到限制。为了应对这一挑战,我们首先通过生物信息学分析和机器学习技术来识别 TLS 标志物。随后,我们利用来自基因表达综合数据库 (GEO) 的空间转录组学数据,构建了两个用于 TLS 预测的支持向量分类器模型:一个没有特征选择,另一个使用标记基因。这两个模型的可比性能证实了所选标记的有效性。大多数标记是免疫球蛋白基因,这表明它们在 TLS 的鉴定中具有重要作用。我们的研究使用机器学习方法识别了 TLS 的标志物,并构建了一个预测 TLS 位置的模型,有助于检测 TLS,并具有影响癌症治疗策略的巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e4c/11011734/416a411cca7e/ijms-25-03887-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验