Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing 400715, China; College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China; Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China.
College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China; School of Synbiology, School of Life Science, Shanxi University, Taiyuan 030006, China.
Plant Commun. 2024 Jun 10;5(6):100921. doi: 10.1016/j.xplc.2024.100921. Epub 2024 Apr 15.
CRISPR-Cas-based genome editing holds immense promise for advancing plant genomics and crop enhancement. However, the challenge of low editing activity complicates the identification of editing events. In this study, we introduce multiple single transcript unit surrogate reporter (STU-SR) systems to enhance the selection of genome-edited plants. These systems use the same single guide RNAs designed for endogenous genes to edit reporter genes, establishing a direct link between reporter gene editing activity and that of endogenous genes. Various strategies are used to restore functional reporter genes after genome editing, including efficient single-strand annealing (SSA) for homologous recombination in STU-SR-SSA systems. STU-SR-base editor systems leverage base editing to reinstate the start codon, enriching C-to-T and A-to-G base editing events. Our results showcase the effectiveness of these STU-SR systems in enhancing genome editing events in the monocot rice, encompassing Cas9 nuclease-based targeted mutagenesis, cytosine base editing, and adenine base editing. The systems exhibit compatibility with Cas9 variants, such as the PAM-less SpRY, and are shown to boost genome editing in Brassica oleracea, a dicot vegetable crop. In summary, we have developed highly efficient and versatile STU-SR systems for enrichment of genome-edited plants.
基于 CRISPR-Cas 的基因组编辑技术为推进植物基因组学和作物改良提供了巨大的潜力。然而,编辑活性低的挑战使得编辑事件的鉴定变得复杂。在本研究中,我们引入了多个单转录单元替代报告(STU-SR)系统来增强基因组编辑植物的选择。这些系统使用与内源基因相同的单指导 RNA 来编辑报告基因,从而在报告基因编辑活性和内源基因之间建立了直接联系。各种策略被用于在基因组编辑后恢复功能报告基因,包括在 STU-SR-SSA 系统中用于同源重组的高效单链退火(SSA)。STU-SR 碱基编辑系统利用碱基编辑来恢复起始密码子,富集 C 到 T 和 A 到 G 的碱基编辑事件。我们的结果展示了这些 STU-SR 系统在增强单子叶水稻基因组编辑事件方面的有效性,包括 Cas9 核酸酶靶向突变、胞嘧啶碱基编辑和腺嘌呤碱基编辑。该系统与 Cas9 变体(如无 PAM 的 SpRY)兼容,并被证明可以提高双子叶蔬菜作物甘蓝的基因组编辑效率。总之,我们开发了高效且多功能的 STU-SR 系统,用于富集基因组编辑植物。