Patil Ayushi, Mahajan Shreya, Menpara Jinal, Wagle Shivali, Pareek Preksha, Kotecha Ketan
Artificial Intelligence & Machine Learning Department, Symbiosis Institute of Technology, Symbiosis International (Deemed University), Pune, Maharashtra 412115, India.
Symbiosis Centre for Applied Artificial Intelligence, Symbiosis Institute of Technology, Symbiosis International Deemed University Maharashtra, Pune 412115, India.
MethodsX. 2024 Apr 4;12:102683. doi: 10.1016/j.mex.2024.102683. eCollection 2024 Jun.
The banking sector's shift from traditional physical locations to digital channels has offered customers unprecedented convenience and increased the risk of fraud for customers and institutions alike. In this study, we discuss the pressing need for robust fraud detection & prevention systems in the context of evolving technological environments. We introduce a graph-based machine learning model that is specifically designed to detect fraudulent activity in various types of banking operations, such as credit card transactions, debit card transactions, and online banking transactions. This model uses advanced methods for anomalies, behaviors, and patterns to analyze past transactions and user behavior almost immediately. We provide an in-depth methodology for evaluating fraud detection systems based on parameters such as Accuracy Recall rate and False positive rate ROC curves. The findings can be used by financial institutions to develop and enhance fraud detection strategies as they demonstrate the effectiveness and reliability of the proposed approach. This study emphasizes the critical role that innovative technologies play in safeguarding the financial sector from the ever-changing strategies of fraudsters while also enhancing banking security.•This paper aims to implement the detection of fraudulent transactions using a state-of-the-art Graph Database approach.•The relational graph of features in the dataset used is modelled using Neo4J as a graph database.•Applying JSON features from the exported graph to various Machine Learning models, giving effective outcomes.
银行业从传统实体网点向数字渠道的转变为客户带来了前所未有的便利,但同时也增加了客户和机构面临欺诈的风险。在本研究中,我们探讨了在不断发展的技术环境下,对强大的欺诈检测与预防系统的迫切需求。我们引入了一种基于图的机器学习模型,该模型专门设计用于检测各类银行业务操作中的欺诈活动,如信用卡交易、借记卡交易和网上银行交易。此模型使用先进的异常、行为和模式分析方法,几乎能立即分析过往交易和用户行为。我们提供了一种基于准确率、召回率和误报率等参数以及ROC曲线来评估欺诈检测系统的深入方法。这些研究结果可供金融机构用于制定和加强欺诈检测策略,因为它们证明了所提方法的有效性和可靠性。本研究强调了创新技术在保护金融部门免受欺诈者不断变化的策略影响以及增强银行安全性方面所发挥的关键作用。
• 本文旨在使用最先进的图数据库方法实现欺诈交易检测。
• 使用Neo4J作为图数据库对所用数据集中的特征关系图进行建模。
• 将导出图中的JSON特征应用于各种机器学习模型,取得了有效的结果。