Key Laboratory of Molecular Medicine and Biotherapy, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Haidian District, No. 5 South Zhongguancun Street, Beijing, 100081, China.
Tangshan Research Institute, Beijing Institute of Technology, No. 57, South Jianshe Road, Lubei District, Tangshan, Hebei, 063000, China.
Adv Sci (Weinh). 2024 Jun;11(23):e2310215. doi: 10.1002/advs.202310215. Epub 2024 Apr 16.
Microbial factories lacking the ability of dynamically regulating the pathway enzymes overexpression, according to in situ metabolite concentrations, are suboptimal, especially when the metabolic intermediates are competed by growth and chemical production. The production of higher alcohols (HAs), which hijacks the amino acids (AAs) from protein biosynthesis, minimizes the intracellular concentration of AAs and thus inhibits the host growth. To balance the resource allocation and maintain stable AA flux, this work utilizes AA-responsive transcriptional attenuator ivbL and HA-responsive transcriptional activator BmoR to establish a concentration recognition-based auto-dynamic regulation system (CRUISE). This system ultimately maintains the intracellular homeostasis of AA and maximizes the production of HA. It is demonstrated that ivbL-driven enzymes overexpression can dynamically regulate the AA-to-HA conversion while BmoR-driven enzymes overexpression can accelerate the AA biosynthesis during the HA production in a feedback activation mode. The AA flux in biosynthesis and conversion pathways is balanced via the intracellular AA concentration, which is vice versa stabilized by the competition between AA biosynthesis and conversion. The CRUISE, further aided by scaffold-based self-assembly, enables 40.4 g L of isobutanol production in a bioreactor. Taken together, CRUISE realizes robust HA production and sheds new light on the dynamic flux control during the process of chemical production.
缺乏根据原位代谢物浓度动态调节途径酶过表达能力的微生物工厂是不理想的,特别是当代谢中间体被生长和化学产物竞争时。由于高等醇(HA)从蛋白质生物合成中劫持氨基酸(AA),从而使细胞内 AA 浓度最小化,并抑制宿主生长。为了平衡资源分配并保持稳定的 AA 通量,本工作利用 AA 响应转录衰减子 ivbL 和 HA 响应转录激活剂 BmoR 建立了基于浓度识别的自动动态调节系统(CRUISE)。该系统最终维持了 AA 的细胞内稳态,并使 HA 的产量最大化。结果表明,ivbL 驱动的酶过表达可以在反馈激活模式下动态调节 AA 到 HA 的转化,而 BmoR 驱动的酶过表达可以在 HA 生产过程中加速 AA 生物合成。通过细胞内 AA 浓度平衡生物合成和转化途径中的 AA 通量,反之通过 AA 生物合成和转化之间的竞争稳定。CRUISE 进一步通过基于支架的自组装,在生物反应器中实现了 40.4 g/L 的异丁醇产量。总之,CRUISE 实现了稳健的 HA 生产,并为化学产物生产过程中的动态通量控制提供了新的思路。