Ren Xiaomeng, Xu Cheng, Jiang Yu, Teng Da, Liu Xinmo, Wang Junsong, Zhang Wei
Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100089, China.
Senior Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100089, China.
Heliyon. 2024 Apr 10;10(8):e29453. doi: 10.1016/j.heliyon.2024.e29453. eCollection 2024 Apr 30.
Structural support for depressed tibial plateau fractures is receiving increasing attention. Currently, there has been little biomechanical evaluation of structural support. This work aimed to investigate the effect of structural support size and position on fracture fixation stability.
A split-depressed tibial plateau fracture model was created according to the fracture map. Cortical screws combined with structural filler were used for fracture fixation. The filler diameter was set to small, medium and large, and the filler position was set to the center and offset by 1, 2 and 3 mm to study the effect of position and size on stability.
The maximum stress on the implant in all scenarios occurs at the lower contact surface between the anterior screw and the filler. Increased support size resulted in increased mean maximum screw stress, depressed fragment axial displacement and separated fragment transverse displacement (screw stress: 266.6 ± 37.7 MPa vs. 266.7 ± 51.0 MPa vs. 273.8 ± 41.5 MPa; depressed displacement: 0.123 ± 0.036 mm vs. 0.133 ± 0.049 mm vs. 0.158 ± 0.050 mm; separated displacement: 0.402 ± 0.031 mm VS 0.412 ± 0.047 mm VS 0.437 ± 0.049 mm). The larger the offset of the support position was, the larger the peak screw stress and the larger the reduction loss of depressed and separated fragment reduction, regardless of the support size. The medium support combined with the central position presented the minimum of peak stress and reduction loss. Cortical bone was below 2 % and trabecular strain was below 10 % for all scenarios.
Central placement of structural support provides superior stability for the treatment of depressed tibial plateau fractures compared to the eccentric placement. When a support is placed centrally, optimal stability is achieved when the diameter matches the diameter of the depressed region. Thus, the utilization of equal-diameter fillers to provide central support appears to be an ideal selection for depressed tibial plateau fractures.
胫骨平台凹陷骨折的结构支撑受到越来越多的关注。目前,对结构支撑的生物力学评估较少。本研究旨在探讨结构支撑的尺寸和位置对骨折固定稳定性的影响。
根据骨折图谱建立胫骨平台劈裂凹陷骨折模型。采用皮质骨螺钉联合结构填充物进行骨折固定。将填充物直径设置为小、中、大,填充物位置设置为中心以及偏移1、2和3毫米,以研究位置和尺寸对稳定性的影响。
在所有情况下,植入物上的最大应力出现在前侧螺钉与填充物之间的下接触面。支撑尺寸增加导致平均最大螺钉应力、凹陷骨折块轴向位移和分离骨折块横向位移增加(螺钉应力:266.6±37.7兆帕对266.7±51.0兆帕对273.8±41.5兆帕;凹陷位移:0.123±0.036毫米对(0.133\pm0.049)毫米对0.158±0.050毫米;分离位移:0.402±0.031毫米对0.412±0.047毫米对0.437±0.049毫米)。无论支撑尺寸如何,支撑位置偏移越大,螺钉峰值应力越大,凹陷和分离骨折块复位丢失越大。中等支撑与中心位置相结合时,峰值应力和复位丢失最小。在所有情况下,皮质骨应变低于2%,小梁骨应变低于10%。
与偏心放置相比,结构支撑的中心放置为胫骨平台凹陷骨折的治疗提供了更好的稳定性。当支撑物放置在中心位置时,直径与凹陷区域直径匹配时可实现最佳稳定性。因此,使用等直径填充物提供中心支撑似乎是胫骨平台凹陷骨折的理想选择。