Dahlström Käthe M, Salminen Tiina A
Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland; InFLAMES Research Flagship Center, Åbo Akademi University, 20520 Turku, Finland.
Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland; InFLAMES Research Flagship Center, Åbo Akademi University, 20520 Turku, Finland.
Curr Opin Struct Biol. 2024 Jun;86:102819. doi: 10.1016/j.sbi.2024.102819. Epub 2024 Apr 16.
The three-dimensional structure of proteins determines their function in vital biological processes. Thus, when the structure is known, the molecular mechanism of protein function can be understood in more detail and obtained information utilized in biotechnological, diagnostics, and therapeutic applications. Over the past five years, machine learning (ML)-based modeling has pushed protein structure prediction to the next level with AlphaFold in the front line, predicting the structure for hundreds of millions of proteins. Further advances recently report promising ML-based approaches for solving remaining challenges by incorporating functionally important metals, co-factors, post-translational modifications, structural dynamics, and interdomain and multimer interactions in the structure prediction process.
蛋白质的三维结构决定了它们在重要生物过程中的功能。因此,当结构已知时,可以更详细地了解蛋白质功能的分子机制,并将所获得的信息应用于生物技术、诊断和治疗领域。在过去五年中,基于机器学习(ML)的建模将蛋白质结构预测提升到了一个新的水平,AlphaFold处于领先地位,预测了数亿种蛋白质的结构。最近的进一步进展报告了一些有前景的基于ML的方法,通过在结构预测过程中纳入功能重要的金属、辅因子、翻译后修饰、结构动力学以及结构域间和多聚体相互作用来解决剩余的挑战。