Suppr超能文献

Glu-Ensemble:一种用于2型糖尿病患者血糖预测的集成深度学习框架。

Glu-Ensemble: An ensemble deep learning framework for blood glucose forecasting in type 2 diabetes patients.

作者信息

Han Yechan, Kim Dae-Yeon, Woo Jiyoung, Kim Jaeyun

机构信息

Department of Medical Science, Soonchunhyang University, Asan, 31538, Republic of Korea.

Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, 31151, Republic of Korea.

出版信息

Heliyon. 2024 Apr 4;10(8):e29030. doi: 10.1016/j.heliyon.2024.e29030. eCollection 2024 Apr 30.

Abstract

Diabetes is a chronic metabolic disorder characterized by elevated blood glucose levels, posing significant health risks such as cardiovascular disease, and nerve, kidney, and eye damage. Effective management of blood glucose is essential for individuals with diabetes to mitigate these risks. This study introduces the Glu-Ensemble, a deep learning framework designed for precise blood glucose forecasting in patients with type 2 diabetes. Unlike other predictive models, Glu-Ensemble addresses challenges related to small sample sizes, data quality issues, reliance on strict statistical assumptions, and the complexity of models. It enhances prediction accuracy and model generalizability by utilizing larger datasets and reduces bias inherent in many predictive models. The framework's unified approach, as opposed to patient-specific models, eliminates the need for initial calibration time, facilitating immediate blood glucose predictions for new patients. The obtained results indicate that Glu-Ensemble surpasses traditional methods in accuracy, as measured by root mean square error, mean absolute error, and error grid analysis. The Glu-Ensemble framework emerges as a promising tool for blood glucose level prediction in type 2 diabetes patients, warranting further investigation in clinical settings for its practical application.

摘要

糖尿病是一种慢性代谢紊乱,其特征是血糖水平升高,会带来重大健康风险,如心血管疾病以及神经、肾脏和眼部损伤。对糖尿病患者而言,有效管理血糖对于降低这些风险至关重要。本研究介绍了Glu-Ensemble,这是一个为精确预测2型糖尿病患者血糖而设计的深度学习框架。与其他预测模型不同,Glu-Ensemble解决了与小样本量、数据质量问题、对严格统计假设的依赖以及模型复杂性相关的挑战。它通过使用更大的数据集提高了预测准确性和模型通用性,并减少了许多预测模型中固有的偏差。与针对特定患者的模型不同,该框架的统一方法无需初始校准时间,便于为新患者立即进行血糖预测。所得结果表明,通过均方根误差、平均绝对误差和误差网格分析衡量,Glu-Ensemble在准确性方面超过了传统方法。Glu-Ensemble框架成为预测2型糖尿病患者血糖水平的一个有前景的工具,值得在临床环境中对其实际应用进行进一步研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8322/11024573/eb0bb5a642b1/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验